
OCI Bundle Generator Requirements

Overarching Goals

Convert OCI images generated by the Firebolt SDK into a lightweight, minimal OCI
bundle specific to a device that can be run by Dobby on the STB

In traditional container solutions (Docker, Podman), this stage is performed by the
container runtime itself. However, for performance reasons we cannot pull an entire
image and unpack it/convert it on a STB. Therefore bundle generator moves this stage
to a pre-processing step in a cloud environment

Generated bundles must be able to run on a local machine/STB for use during application
development

Allow creating configuration files per DAC compatible device. This will allow
BundleGenerator to generate bundles that will work on a device without actually running on
the device.

Allow creating operator configurations to apply business logic to a container image file
across all platforms.

Process an extended "application capabilities" section to add/remove/change specific
sections of the generated bundle according to application requirements

Prevent creating a bundle for an incompatible device. If the device does not support the
required RDK release, then the image cannot be run on that device. However, aim to ensure
broad compatibility of applications. The goal of running containerised apps is to allow
applications to not be concerned about the platform they are running on

Allow processing stages to be extended as necessary

Input

OCI Image

Description

OCI Image - generated locally or pulled from an OCI Registry

Format

Directory storing the manifest, layer tarballs and signatures as individual files. Useful for
quick debugging of a newly generated image locally (for developer using the SDK)

OCI Image Layout Path - An image tag in a directory compliant with "Open Container Image
Layout Specification" at path. See https://github.com/opencontainers/image-spec/blob/mast
er/image-layout.md for more details

Allow optionally passing in tag to use a specific tagged image version. Default to latest

Platform Configuration

Description

af://n0
af://n2
af://n23
af://n24
https://github.com/opencontainers/image-spec/blob/master/image-layout.md
af://n36

Configuration file containing information specific to a single RDK hardware platform. The SDK
would ship with configurations for common reference devices such as the Raspberry Pi, Emulator
and x86.

The information in this configuration could include:

Device name

Architecture

RDK Version (2020Q1, 2020Q2 etc)

Include available/installed RDK Services (Thunder NanoServices)
Could have multiple configurations for the same device but for different RDK releases if
different versions are in use in the field

GPU Device nodes (and similar - e.g. VPU) that need to be mapped inside the container if
graphics is needed

GPU Libraries

Set of tuples containing libraries that must be automatically mounted inside the
container for graphics support
This allows for adding custom, platform specific graphics libraries into containers (for
example libnexus on broadcom platforms)
These mounts will override any graphics libraries included with the application

General Libraries

A list of all the libraries available on the device. This will be used when converting the
image to bundle to reduce the size of the final output by bind mounting in libraries that
are the same major version in the image and on the device

This section must be automatically generated for a platform

It should be possible for a developer to force the use of a library minor version (e.g.
libFoo.so.2.1.5). In this case, unless that exact minor version is available on the STB,
the version in the image will be used

The mechanism for this should be exposed in the STB publishing tools
Maximum amount of RAM an application can use (maybe just the amount of RAM available
on the platform?)

Supported resolutions (1080p, 4k)

Supported Networking options

Custom environment variables that must be set, specific for the platform

XDG_DATA_DIRS
XDG_RUNTIME_DIR

Custom files/paths that must be mounted inside the container

Users/Groups

Containerised apps should run as a unique user and group. Define what users/groups
a container should run in
Allow specifying a range: e.g. AppUser[0-99]:AppGroup

Non-standard mappings

Across RDK, many paths and file names are standardised across builds. If the device
uses any non-standard paths or devices, this set of tuples can override the defaults.

This configuration would likely be split into multiple files for readability/maintenance purposes.

Most of this configuration will be generated by hand per device, although this can be based off
templates provided for reference devices. However, some large sections should be automatically
generated, such as the library list

Format

JSON file

Operator Configuration

Configuration file containing information that applies to all operator devices. This will allow
enforcing consistency between devices and applications if necessary. This could include:

Environment variables

TODO:: What else might we need here?

Output

OCI Bundle

Description

The main output of BundleGen should be an extended OCI bundle. This will contain the
config.json , with an additional section containing the rdkPlugins section to provide
additional functionality required by the application - normally specified in the application
capabilities

This bundle would be the smallest possible compatible bundle, containing only libraries that are
not present on the STB. Any libraries that can be provided by RDK on the STB should be bind-
mounted inside the container. This reduces the size of the bundle, necessary to decrease
download time and increase the amount of containers that can be stored on the limited flash on
an STB.

This differs from the current approach in Dobby where the /lib and /usr/lib directory are
mounted into the container in their entirety and the application is expected to use only the
libraries on the STB - unable to provide its own.

This output format would be used to allow downloading the OCI Bundle* to a STB for execution
directly by Dobby. Distribution could take place over any operator specific mechanism - FTP,
HTTPS etc.

Format

Directory
Tarball of above directory

Minimal OCI Image (??)

Description

af://n109
af://n116
af://n117
af://n130

This is a potential alternative output format of a minimal, single-layer OCI image specific to this
container. This small image could then be uploaded to an OCI registry, allowing an application to
be downloaded and distributed using the OCI distribution specification. The image could then be
unpacked and run by Dobby (TODO:: how/when would this occur? On box?)

Alternative: same image, but just add a tag for this single-layer version for a certain device?

TODO:: This needs to be fleshed out if we're

Processing Workflow

0. Obtain the OCI Image

Whilst out of the main scope of BundleGen, we must first obtain an OCI image for processing.

One potential candidate tool for retrieving images is skopeo: https://github.com/containers/skop
eo

skopeo is a command line utility that performs various operations on container images
and image repositories.

skopeo does not require the user to be running as root to do most of its operations.

skopeo does not require a daemon to be running to perform its operations.

skopeo can work with OCI images as well as the original Docker v2 images.

Skopeo works with API V2 container image registries such as docker.io and quay.io
registries, private registries, local directories and local OCI-layout directories. Skopeo can
perform operations which consist of:

Copying an image from and to various storage mechanisms. For example you can copy
images from one registry to another, without requiring privilege.
Inspecting a remote image showing its properties including its layers, without requiring
you to pull the image to the host.
Deleting an image from an image repository.
When required by the repository, skopeo can pass the appropriate credentials and
certificates for authentication.

1. Unpack the OCI image

The first stage of processing should be to unpack to the OCI image into an OCI bundle (rootfs +
config.json) that we can manipulate to form our final bundle to be delivered to the STB.

Solution A

Proposed tool: umoci: https://umo.ci/quick-start/workflow/

Umoci is an official opencontainers (formally OpenSUSE) tool that can manipulate downloaded
OCI images and convert them to OCI bundles. Written in Go.

af://n137
af://n138
https://github.com/containers/skopeo
https://github.com/opencontainers/image-spec
https://docker.io/
https://quay.io/
af://n158
af://n160
https://umo.ci/quick-start/workflow/

Here the opensuse image with tag 42.2 has been unpacked to produce a rootfs directory and
config.json. As per the documentation:

SYNOPSIS

umoci unpack --image=image[:tag] [--rootless] [--uid-map=value] [--uid-map=value] [--
keep-dirlinks] bundle

DESCRIPTION

Extracts all of the layers (deterministically) to an OCI runtime bundle at the path bundle, as
well as generating an OCI runtime configuration that corresponds to the image's
configuration. In addition, an mtree(8) specification is generated at the time of unpacking
to allow filesystem deltas to be generated by umoci-repack(1) and thus allowing for the
creation of layered OCI images.

Note that umoci can also be used to repack the modified rootfs back into the original image as a delta
layer, or into a completely new image, potentially useful for a minimal OCI image output format.
Changes to the config.json are not reflected in a repacked image and must be modified with the umoci
config command

Potential Pitfalls

umoci doesn't currently support multi-arch images, and doesn't expose a way through the CLI to
select which arch to unpack. See:

https://github.com/opencontainers/umoci/issues/10

Right now, umoci supports recursively looking through indexes to find a manifest -- all the
code is in place for that.

The main issue is that (in the CLI front-end) there's no way to say (in the case of ambiguity,
like a multi-arch image) what manifest you'd prefer. I was thinking of just making it use the
host, but given the fun CLI spaghetti that skopeo has turned into (in this regard) it'd be
nicer if the CLI UX was more reasonable. Docker just uses the current host, but given the
need for cross-compiling this is a bit of a pain.

In addition, umoci doesn't know how to create a new multi-arch image. It can modify one
that already exists, but it doesn't know how to "upgrade" a single-arch image to a multi-
arch one. This would be quite trivial to add, but without the first part (a CLI for extraction
that makes sense) the CLI for the creation similarly wouldn't make sense.

https://github.com/opencontainers/umoci/issues/313

% skopeo copy docker://opensuse/amd64:42.2 oci:opensuse:42.2 # Obtain the image
from the docker hub using Skopeo
% sudo umoci unpack --image opensuse:42.2 bundle
% ls -l bundle
total 720
-rw-r--r-- 1 root root 3247 Jul 3 17:58 config.json
drwxr-xr-x 1 root root 128 Jan 1 1970 rootfs
-rw-r--r-- 1 root root 725320 Jul 3 17:58
sha256_8eac95fae2d9d0144607ffde0248b2eb46556318dcce7a9e4cc92edcd2100b67.mtree
-rw-r--r-- 1 root root 270 Jul 3 17:58 umoci.json

af://n166
af://n168
af://n171
https://github.com/opencontainers/umoci/issues/10
https://github.com/opencontainers/umoci/issues/313

umoci has very ... limited ... support for architecture specification because the entire
design of architecture handling in OCI was being redesigned when I first started working on
umoci .

Potentially in the roadmap for 0.5 release

Solution B

Proposed tool: OCI-Image-Tool https://github.com/opencontainers/image-tools

Another official opencontainers tool for working with images. Again written in Go.

This does currently have support for dealing with multi-arch images, unlike umoci

NAME

oci-image-tool unpack - Unpack an image or image source layout

SYNOPSIS

oci-image-tool unpack [src] [dest] [OPTIONS]

DESCRIPTION

oci-image-tool unpack validates an application/vnd.oci.image.manifest.v1+json and
unpacks its layered filesystem to dest .

OPTIONS

--help Print usage statement

--ref=[] Specify the search criteria for the validated reference, format is A=B. Reference
should point to a manifest or index. e.g. --ref name=v1.0 --ref platform.os=latest Only
support name , platform.os and digest three cases.

--type="" Type of the file to unpack. If unset, oci-image-tool will try to auto-detect the type.
One of "imageLayout,image,imageZip"

--platform="" Specify the os and architecture of the manifest, format is OS:Architecture.
e.g. --platform linux:amd64 Only applicable if reftype is index.

$ skopeo copy docker://busybox oci:busybox-oci:latest
$ mkdir busybox-bundle
$ oci-image-tool unpack --ref name=latest busybox-oci busybox-bundle
$ tree busybox-bundle
busybox-bundle
├── bin
│ ├── [
│ ├── [[
│ ├── acpid
│ ├── addgroup
│ ├── add-shell
│ ├── adduser
│ ├── adjtimex
│ ├── ar
│ ├── arp
│ ├── arping
│ ├── ash
[...]

af://n182
https://github.com/opencontainers/image-tools
af://n188
af://n190
af://n192
af://n194

However, this tool is now unmaintained and umoci is recommended as the replacement...:

This project is no longer actively maintained. However, umoci is a much more full-featured
tool for manipulating OCI images, and is now an OCI project as a reference implementation
of the OCI image-spec. I would strongly suggest people move to using umoci.

https://github.com/opencontainers/image-tools/issues/222

2. Validate App is compatible

This should be a first-pass, fail-fast test to ensure that the app can actually be packaged and run
on the target device. Check that the specified app RDK version is suitable with the RDK versioned
defined in the platform configuration. Check that the platform can supply the capabilities
required by the app - such as RAM, storage space and resolutions.

If the app is incompatible, return an error.

3. Library Matching

Run an ldd on the binary (using a suitable version of ldd for the arch), to work out it's
dependencies. Then, based on the information in the platform configuration, determine if a
suitable library is available on the STB.

If the STB provides a compatible library - deemed to be one of the same MAJOR version
(assuming semver), then edit the config.json in the bundle to add the new bind mount into the
container. Delete the library from the bundle rootfs.

If the STB does not provide a suitable library, then the library should remain in the rootfs.

This step should then remove any libraries that are not needed by the application.

Here be dragons: If the app uses dlopen to manually load dynamic libraries, we somehow need to
make sure those aren't accidentally removed at this stage

Failure here should go back to the safe option of just using the bundled libraries for the app -
since that means the app will work, but final size will be larger.

3a. Add GPU Lib Mounts

Based on the libraries specified in the "GPU Libraries" section of the platform config, add bind
mounts for the necessary graphics libraries into the container.

Failure here should be fatal.

4. Add Extra Bind Mounts

If any other bind mounts are needed, for example for OCDM or similar, add them now.

5. Add Devices

Any devices set in the platform configuration should now be added to the OCI config in the bind
mounts section and the devices section. Note as per the specification, crun will automatically
provide the container with:

/dev/null

/dev/zero

https://github.com/opencontainers/umoci
https://github.com/opencontainers/image-tools/issues/222
af://n243
af://n202
af://n209
af://n212
af://n214
http://man7.org/linux/man-pages/man4/null.4.html
http://man7.org/linux/man-pages/man4/zero.4.html

/dev/full

/dev/random

/dev/urandom

/dev/tty

/dev/console
/dev/ptmx . A bind-mount or symlink of the container's /dev/pts/ptmx .

When starting from a Dobby spec, Dobby also only allows devices in the device whitelist:

7. Add Environment Vars

Any environment variables in the platform/operator config should be added to the runtime
config now

7. Add Plugins

Based on the capabilities required by the application and provided by the platform, generate and
write the rdkPlugins section of the runtime config if necessary

8. Write Anything Else

Any other sections of the runtime config that need to be modified should be done now.

// ---
/**
 * @brief Builds the whitelist of allowed device numbers
 *
 * At the moment only the following devices are added:
 * hidraw, 0 - 100
 * input, 64 - 95
 *
 * The list is exclusive of the opengl / graphics device nodes and the set of
 * 'standard' device nodes.
 *
 */

http://man7.org/linux/man-pages/man4/full.4.html
http://man7.org/linux/man-pages/man4/random.4.html
http://man7.org/linux/man-pages/man4/random.4.html
http://man7.org/linux/man-pages/man4/tty.4.html
http://man7.org/linux/man-pages/man4/pts.4.html
https://www.kernel.org/doc/Documentation/filesystems/devpts.txt
af://n236
af://n238
af://n240

	OCI Bundle Generator Requirements
	Overarching Goals
	Input
	OCI Image
	Platform Configuration
	Operator Configuration

	Output
	OCI Bundle
	Minimal OCI Image (??)

	Processing Workflow
	0. Obtain the OCI Image
	1. Unpack the OCI image
	Solution A
	Potential Pitfalls

	Solution B

	2. Validate App is compatible
	3. Library Matching
	3a. Add GPU Lib Mounts
	4. Add Extra Bind Mounts
	5. Add Devices
	7. Add Environment Vars
	7. Add Plugins
	8. Write Anything Else

