
1

Introduction to Secure Software
Coding Practices for RDK & CPE

2

• Why conduct training in using secure techniques to develop code for RDK and other CPE
products?
– “Practicing strong information and cybersecurity is a nonnegotiable requirement for

organizations doing business today.” – Carnegie Mellon Software Engineering Institute CERT

• It’s hard to disagree. Therefore, the RDK development community’s policy is to strongly
encourage all developers to be familiar with best practices. Our goal is to eventually
establish best practices as a formal policy, where code not following security guidelines
will be flagged during check-in.

• This training is an introduction to some of the most commonly encountered issues and
techniques to ensure a minimum level of compliance with secure coding practices.

• References and additional resources listed at the end of this training should be studied
to build a more complete skill set.

Introduction

3

• Again, from CMU/SEI CERT:
– “Reduce the number of vulnerabilities to a level that can be fully mitigated in

operational environments”
– “Eliminating vulnerabilities during development can result in a two to three orders-

of-magnitude reduction in the total cost of repairing the code versus making the
repairs afterwards.”

• These goals area high bar. This training is the a step towards realizing them
• This is only an introduction . Developers must refer to the CERT C/C++

Coding Standard for additional detailed and authoritative standards.

The Goals of Using Secure Coding Methods

4

• String Functions
• Formatted String Functions
• Tainted Strings
• Arrays and Buffers
• Dynamic Memory
• Pointers
• Integers
• Casts
• Concurrency
• Paths and Files
• Using assert()
• Tools

Categories

5

• strcpy(dest,src)
• Must be replaced by strncpy(dest,src,len) where the value of len is

guaranteed to the LESS THAN the available memory at dest.
– Leave room for terminator byte
– Don’t use source string length
– Be vigilant for edge cases, off-by-one, ends of strings

• Examples:
• char dest[4];
• const char *src=“1234”;
• const char src2[] = “12345”;
• strcpy(dest,src); /* ERROR: BUFFER OVERFLOW, terminator byte */
• strncpy(dest,src,sizeof(dest)); /* ERROR: UNTERMINATED STRING */
• strncpy(dest,src2,sizeof(src2)); /* ERROR: Don’t use source string length! */
• strncpy(dest,src,sizeof(dest)-1); /* dest = “123” and UNterminated */
• dest[3] = ‘\0’; /* string is terminated, “123\0” */

String Functions

6

• strcat(dest,src)
• Must be replaced with strncat(dest,src,len) where len is

guaranteed to be less than the available memory available at dest
– Leave room for terminator byte, it is always included in the concatenation
– Don’t use source string length
– Be vigilant for edge cases, off-by-one, ends of strings

• Examples:
• char dest[8];
• const char *src=“1234”;
• strncpy(dest,src,sizeof(dest)); /* Set up initial string */
• strncat(dest,src,sizeof(dest)); /* ERROR – Overflow: there are not 8 bytes remaining! */
• strncpy(dest,src,sizeof(dest)); /* Set up initial string */
• strncat(dest,src,sizeof(dest)-strlen(dest)); /* ERROR – No room for terminator */
• strncpy(dest,src,sizeof(dest)); /* Set up initial string */
• strncat(dest,src,sizeof(dest)-strlen(dest)-1); /* OK */

String Functions (continued)

7

• strlen(a)
• Should be replaced by strnlen(str,len) when processing untrusted data,

where the value of len is less or equal to the length of the longest valid
string (with terminator) that could legitimately be stored at “str” or reflects
another limiting boundary.

• Why?
– Often a string length is obtained for use in subsequent operations (e.g. memory allocation)
– Exceptions can be forced with unreasonable string lengths
– Unreasonable lengths used in combination with other string operations can lead to swamping the

processor
– May help mitigate other errors, such as unterminated strings

• If parameter str is a const string literal (e.g. in a table of string consts), a
counted function is unnecessary.

String Functions (continued)

8

• strcmp(str1,str2)
• Should be replaced by strncmp(str1,str2,len) for untrusted input, where the

value of len is less or equal to the length of the longest valid string (with
terminator) that could legitimately be stored at “str1” and “str2” or reflects
another limiting boundary.

• Why?
– Exceptions can be forced with unreasonable string lengths
– May help mitigate other errors, such as unterminated strings

• The length must be long enough to account for the termination byte of one
of the strings, or else a prefix match will result.

String Functions (continued)

9

• Issues to consider:
– There are other approaches to string security - consider use of a secure C

string library.
– The functions strstr and strchr are not well supported with secure versions but

an implementation is on Confluence.
– Length/capacity values are often not in scope where they are needed. The call

chain may need to be modified to pass them.
– Use the basic_string class (and subclasses) in C++ when possible

• Even basic_string is not foolproof. Study the references

String Functions (continued)

10

• Note: Details of some functions may vary depending on the character set or encoding. Developers may
need to adapting these guidelines for variations.

• sprintf (and related functions)
• Must be replaced by snprintf(dest,len,format,…)

– len must be <= the available memory available at dest
– Return value of < 0 means the function failed

– Return value of >= len means the string was truncated and must not be used to
account for the length of the actual output string, but is the number of characters that
would have been output.

– Watch out for off-by one errors!
– Resulting string will have a 0-termination

Formatted String Functions

11

• Untrusted data must not be used as a format string. Strongly prefer const
format strings

• The %n format specifier can be used to write arbitrary values and must not be
present. If a use case is encountered where its use seems mandator, a security
team engineer must review the use case before implementation

• Validate runtime library: some versions ignore the length in snprintf()!
• Enable compiler checking to validate arguments to a formatted string function

– -Wformat
– -Wformat-nonliteral
– -Wformat-security

Formatted String Functions (continued)

12

• Tainted strings come from untrusted sources:
– Files
– User Input
– Network and other Device I/O
– Environment variables
– Command parameters

• Threats:
– Unsafe usage

• Format strings. See above: untrusted input must not be used for string formatting

– Data-as-code
• Command injection, major problem:
char cmdbuf[256] = “chmod 666 “;
fgets(cmdbuf+strlen(cmdbuf), sizeof(cmdbuf)-strlen(cmdbuf)-1, file);
system(cmdbuf); /* VULNERABILITY – untrusted input */
• The string in the file can be crafted to cause arbitrary shell commands to execute

– Resource violations
• Buffer overruns, memory exhaustion

Tainted Strings

13

• Untrusted input must not be used as function invocations, parameters to
functions, as query parameters, JSON elements, DOM elements, etc.
without sanitization

• String sanitization should use a common function with clear definitions of
sanitization options.
• Stripping metacharacters
• Quoting may be appropriate
• Different functions can be used to define sanitizing schemes for shell scripts, JSON,

user input, web forms, etc.
• Research options in the references and on the web

• All untrusted string inputs must be length-limited

Tainted Strings (continued)

14

• Except in trivial cases:
• Array dimensions must be defined by symbolic constants and not by “magic

numbers”
– Array definitions like int16_t myarray[100]; can lead to the introduction of overrun

errors. Use #define, static consts, e.g.
• #define ARRAYMAX 100
• int16_t myarray[ARRAYMAX];

• Accessor variables must use symbolic dimension constants and not “magic
numbers.”
– That way if the array dimension is ever changed, all accessors are still correct

• for(i=0;i<ARRAYMAX;i++) {} /* Correct */
• for(i=0;i<100;i++){} /* error prone, avoid this */

Arrays and Buffers

15

•Data buffer access not within a limit-checked loop must be
bounds-checked to ensure the access is legitimate. If the buffer
access is in a performance-sensitive function the bounds check
may be in a debug-only build.

•Buffer bounds checks must check for underrun as well as overrun
•If a bounds check violation is detected, appropriate action must be
taken, consistent with system design and policy

Arrays and Buffers (continued)

16

• Bad Example:
• static int buffer[123]; /* VULNERABLE - “Magic number” */
• void somefunc(int somevalue)
• {
• int someIndex = someCalculation();
• buffer[someIndex] = somevalue; /* VULNERABLE – no bounds check */
• }
•
• Good Example:
• #define SOME_BUFFER_LENGTH 123 /* Use symbolic dimension */
• static int buffer[SOME_BUFFER_LENGTH];
• bool somefunc(int somevalue) /* Add error return code */
• {
• int someIndex = someCalculation();
• if (someIndex < 0 || someIndex >= SOME_BUFFER_LENGTH) {
• return false; /* Do no harm if range error */
• }
• buffer[someIndex] = somevalue;
• return true;
• }

Arrays and Buffers (continued)

17

• The ARRAY_LENGTH construct may be used, where it is defined as
– #define ARRAY_LENGTH(x) (sizeof(x)/(x)[0])
and “x” is a dimensioned array

• ARRAY_LENGTH must not be used on a function parameter or pointer
variable

• Arrays should be strongly typed when their use includes passing as function
parameters:
– static const my_buffer_length=10;
– typedef char my_buffer_type[my_buffer_length];
– void myfunc(my_buffer_type buffer);

Arrays and Buffers (continued)

18

• Buffer Overflow Detection
– “Canaries”: can be inserted by compiler into stack to detect overruns of

local arrays. Can be useful, but are limited.
– GCC “ProPolice” invoked by

• -fstack-protector: protection for vulnerable functions, should be
invoked for production builds

• -fstack-protector-all: protection for all functions, should be invoked
for debug builds

• Inhibiting overflow attacks
– ASLR: Address Space Layout Randomization should be enabled for

production builds

Arrays and Buffers (continued)

19

• Beware common dynamic memory utilization errors:
– Referencing uninitialized memory
– Referencing freed memory
– Multiple frees
– Missing frees (memory leaks)
– NULL pointer accesses
– ALL of these errors can be exploited with security impacts

• Return values from memory allocation functions must be checked
• NULL pointers can be exploited. NULL pointers must not be

dereferenced
• Checks for invalid pointer values should be made in critical

functions, especially where related to security operations

Dynamic Memory

20

• 0-length allocations must be avoided, especially in calls to realloc()
– Edge cases that are implementation dependent and error prone

• free() must not be used with pointers to memory allocated with new()
• delete() must not be used with pointers to memory allocated with malloc()
• delete() must not be called with pointers to memory allocated using new[] ()
• RAII should be used at all times: allocate resources in a constructor, free resources in a

destructor
• Pointer variables must be set to NULL after they are freed, unless they are trivially going

out of scope
• Valgrind memcheck should be incorporated into development processes

Dynamic Memory (continued)

21

• Many function pointers are vulnerable to attack: function
pointers in the ELF Global Offset Table, C++ vtables, the stack
pointer, pointers to global destructors, atexit, exception
handlers, jmpbuf

• Compromise of a function pointer = attacker has complete
control

• Prevent compromise! Follow guidelines and requirements:
– Prevent buffer overflow, arbitrary memory writes via

format strings, and inappropriate use of tainted input
• Securing pointers: encryption/obfuscation. See references

Pointers

22

• Integer arithmetic can lead to security breaches
• Sources of integer errors:

– Overflow/underflow/wraparound
– Datatype conversion, truncation
– Signed/unsigned mismatch
– The references have details on the types of errors and how they occur

• Integer errors introduce vulnerabilities when the incorrect results are used
to:
– Allocate memory
– Access array elements
– Perform timing functions

Integers

23

• Array accessors must be range-checked or clamped to valid values when not
trivially known to be correct

• Tainted integer variables from external untrusted sources must be
sanitized/range checked in all cases, before any use

• Memory allocation sizes should be sanity-checked and kept “reasonable”
• Integer operations must be coded to prevent overflow, underflow,

truncation, loss of sign, incorrect conversions, implementation-dependent
side effects

Integers (continued)

24

• Typedefs may be used to help enforce type safety with
integers. Consider the use of wrapper functions for critical
applications. Use abstract types in C++

• The size_t type must be used for memory allocation,
lengths

• Consider secure integer libraries for critical operations
• Range-checking integer variables will prevent all integer

security vulnerabilities.

Integers (continued)

25

• In C++, C-style casts must not be used
• See CERT standards for recommended use of dynamic_cast, static_cast, and

reinterpret_cast
• Casting between pointer types and integer types should be avoided
• Casting to avoid strong typing should be avoided

– typedef enum { 1,2,3 } mystrongtype;
– void mystrongfunction(mystrongtype myvar) { … }
– for (int i=0;i<100;i++) { mystrongfuncton((mystrongtype)i); } // WRONG

Casts

26

• How to program concurrent code is out of scope for this training but note:
– Be aware that compilers may reorder instructions making code that

appears thread-safe no longer safe.
– Security vulnerabilities that may be introduced by incorrect concurrency

include:
• Deadlock (DoS)
• Breaking security-sensitive algorithms
• Exposing concurrency errors in system services

• Study the references

Concurrency

27

• Path and directory strings must be “canonicalized” before use, including
resolution of symlinks
– “.”, “..”, trailing “/”, and other path element tricks can cause path-compare operations

to be incorrect
– Canonicalization is tricky. See the references.

• Symlinks expose vulnerabilities. They should be avoided if possible and must
be used carefully, resolved during canonicalization.

• Hard links are less vulnerable but still must be used carefully
• Secure partitions should be separate from non-secure partitions

Paths and Files

28

• Functions using path/filenames must ensure a device is not
specified where a file is expected.
– Device files are vulnerable when accessed by operations that

are only appropriate for normal files
• Files must be locked or synchronized between access checks and

usage
– Since files can be global objects, they are subject to race

conditions
– “TOCTOU” – time-of-check/time-of-use vulnerability very

common.

Paths and Files (continued)

29

• Use assert() liberally to force runtime exceptions in debug builds for invalid,
unexpected, or undefined results

• Use static compile-time asserts to detect the failure of expected compile-
time

• Example (from https://github.comcast.com/CPT/xfinity-
classic/blob/master/general/src/general.h)
– #define CASSERT(predicate, dbg_name) \
– typedef char

__ATPASTE4(cassert__,dbg_name,__Line_,__LINE__)
[2*!!(predicate)-1]

– CASSERT(sizeof(uint32_t) == sizeof(int32_t), my_check_11)

Using assert()

30

• Compiler warnings and errors must be set to the most stringent level available, e.g. –
Wall

• Compilation must complete without warnings or errors
• Coverity static source code scans must be run on all sources, and no “high impact”

security-related defects found
– As of June ‘15, the exact scan criteria for acceptance is still being defined

• Valgrind memory analysis should be incorporated into debug builds to check for
memory errors.

• QA automated testing should include a pass with a Valgrind-enabled production build
• Modules should be subjected to extensive automated black-box fuzz testing

– Specific tools vary, for example, for C/C++ libraries http://lcamtuf.coredump.cx/afl/
• More tools will be brought online over time

Tools

http://lcamtuf.coredump.cx/afl/

31

• Object Reuse: after using a security-sensitive variable, its value must be
overwritten

• Principle of least privilege must be applied: do not open a file for writing if
you only need to read

• All cryptographic operations must use an approved library with a strong
source of randomness

• Function parameters must be checked for validity
• Outdated security algorithms and protocols must not be used
• Threat analysis must be performed on non-trivial features and subsystems
• A security-conscious process must be followed when developing software

Other General Security Issues

32

• Authoritative References
– Seacord, Robert – Secure Coding in C and C++, Addison-Wesley 2013
– Carnegie Mellon University Software Engineering Institute CERT –

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Stand
ard

– op.cit. http://www.cert.org/secure-coding/index.cfm
• Supplemental References

– Wheeler, David A., Secure Programming HOWTO, http://www.dwheeler.com/secure-
programs/Secure-Programs-HOWTO.html

– OWASP – Open Software Security Community,
https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Pr
oject

References

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
http://www.cert.org/secure-coding/index.cfm
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.html
https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project

33

• These are code fragments meant to illustrate
concepts, and may include constructs that do not
compile as-is.

Note about Knowledge Checks

34

• What is wrong with the following code:
1. static const int len1=12;
2. char buffer[len1];
3. char otherstring[] = “otherstring”;
4. strncpy(buffer, “mystring”, sizeof(buffer)-1);
5. strncat(buffer, otherstring, sizeof(otherstring));

① “len1” uses a magic number
② buffer is not 0-terminated after line 4
③ otherstring is too long
④ The length parameter in line 5. is wrong

Correct answer: 4. The correct code for this example is
strncat(buffer, otherstring, sizeof(buffer)-strlen(buffer)-1);

Knowledge Check: Strings

35

• Is the following code correct?
1. static const int len1=11;
2. char buffer buffer[len1];
3. strncpy(buffer, ”first string”, len1);
4. strncat(buffer, “second string”, sizeof(buffer)-strlen(buffer)-1);

① Yes
② No

Correct answer: NO. The strncpy on line 3 will leave the string unterminated. The strlen call on line 4 will
return a random number >= sizeof(buffer), making the expression sizeof(buffer)-strlen(buffer)-1 a negative
number, which will overflow, resulting the strncat call overrunning the memory allocated to buffer. One way to
make the code work without this occurring, is: add “buffer[len1-1]=‘\0’”; after line 3. to terminate the string.

Knowledge Check: Strings

36

• What is wrong with this code:
1. #define LEN=12;
2. char buffer[LEN];
3. void myfunction(char *string) {
4. sprintf(buffer, string);
5. }
6. int main(int argc, char *argv[]) {
7. myfunction(argc > 1 ? argv[1] : “Invalid\n”);
8. }

① sprintf on line 4 should use counted function snprintf
② main() doesn’t handle missing command parameters
③ The definition at line 3. should be “myfunction(char const *string)”
④ Untrusted input is used as a format string
⑤ 1 and 4
⑥ 2 and 3
⑦ All of the above

Correct answer: (5)

Knowledge Check: Formatted String Functions

37

• Where are the errors in the following code? Check all that
apply

1. static const int len1=80;
2. void myfunction(int foo) {
3. char buffer[len1];
4. int printed;
5. snprintf(buffer, sizeof(buffer), “%*cIs this %s code?%n\n”,foo,’ ‘,

foo > len1 ? “good” : “bad”, &printed, printed);
6. }

① The sizeof() expression in line 5 is too small
② The “%n” format specifier is used
③ The variable “printed” on line 4. should be unsigned
④ The width specifier will be evaluated before the %n value is evaluated
⑤ Buffer is too big to be allocated on the stack
⑥ The number of arguments to snprintf is wrong

Correct answer: 2,6

Knowledge Check: Formatted String Functions

38

• Select the best code from these choices (assume char buffer[100]):
1. fgets(buffer, sizeof(buffer), stdin); system(buffer);
2. gets(buffer); system(buffer);
3. fgets(buffer, sizeof(buffer), stdin);

for(int i=0;i<strlen(buffer);i++) {
if (buffer[i] == ‘;’ || buffer[i] == ‘|’) { buffer[i] = ‘ ‘; }

}
4. fgets(buffer, sizeof(buffer), stdin);

if (!fork()) { execlp(“sh”, “-c”, buffer); }
5. fgets(buffer, sizeof(buffer), stdin); stripShellMetachars(buffer); system(buffer);

Correct answer: 5. Use centralized function to sanitize string input before passing to an external
string sink. It’s better to pass a sanitized string to system(), than an unsanitized string to execlp().

Knowledge Check: Tainted Strings

39

• Which of the following does not result in untrusted
input:

1. char *mypath = getenv(“PATH”);
2. const char *mycommand = “ls –l”;
3. fread(buffer,sizeof(buffer),1,”/opt/script”);
4. char *mycommand = argv[1];

Correct answer: 2. A hardcoded const string would not be considered
untrusted input

Knowledge Check: Tainted Strings

40

• How can you protect against stack-smashing attacks?
1. When using gcc, build with the –fstack-protector option
2. Insert “stack-gerbils” after array definitions
3. Always bounds-check array accesses, especially writes
4. Never use local buffer arrays
5. 1. and 3.
6. 2. and 4.

Correct answer: 5

Knowledge Check: Arrays and Buffers

41

• Is the following code secure with respect to buffer
overruns?

1. int index, value;
2. static const int arraylen=100;
3. int arrayvals[arraylen];
4. fscanf(stdin,”%d,%d”,&index,&value);
5. if (index < arraylen) { arrayvals[index] = value; }

①Yes, the bounds checking makes the code secure
②No, there’s something missing

Correct Answer: 2. The bounds check does not check for an index < 0, potentially allowing buffer underrun

Knowledge Check: Arrays and Buffers

42

• In C++, what is the best way to avoid memory leaks?
1. Only use static memory buffers
2. Use only new and free
3. Use RAII
4. Have your code reviewed
5. All of the above

Correct Answer: 3. Resource Acquisition Is Initialization, ties resources to object lifetimes.
It doesn’t prevent all leakage, but it supports good cohesion between allocation of
resources in a constructor, and freeing of resources in a destructor.

Knowledge Check: Dynamic Memory

43

• What is wrong with the following code, check all that apply
1. void myfunction(void) {
2. int *buffer; int i;
3. static const int mylength=123;
4. if (buffer == NULL) { buffer=malloc(mylength); }
5. for(i=0;i < 100; i++) { buffer[i] = i; }
6. printf(“Done!\n”);
7. }

① mylength is too big and is defined locally
② buffer is uninitialized, but checked for NULL
③ There is no bound check on the array access on line 5.
④ buffer should be an array of unsigned int.
⑤ The index count should be from 1 to 100
⑥ The loop limit is not defined in terms of the actual buffer length
⑦ There is no NULL check after the malloc on line 4.
⑧ The allocated memory is not freed at the function exit

Correct Answer: 2., 3., 6., 7., 8. are all errors

Knowledge Check: Dynamic Memory

44

• Which of the following creates a potential arbitrary
code execution vulnerability?

1. A jump table generated by the compiler for handling a switch statement
2. An array passed as a parameter to a function
3. A C++ global object definition
4. Missing NULL check after new()
5. Allocating too large a buffer

Correct answer: 3. Allocating a global object makes the global pointer to the object
destructor vulnerable.

Knowledge Check: Pointers

45

• What is not a source of integer errors?
1. Using casts, resulting in unexpected sign extension
2. Overflow of intermediate results in multi operator expressions
3. Undefined compiler behavior occurring in expression evaluation
4. Range checking all variables before use in an expression
5. Truncation resulting from assignment

Correct answer: 4. is the one item in the list guaranteed to ensure integer
errors don’t occur

Knowledge Check: Integers

46

• Is the following code correct?
1. long var = (16 << -2);
2. unsigned int foo = var * -100000;
3. if (foo == -400000) { printf(“Correct!\n”); }

①Yes
②No
③Maybe

Correct answer: 2. No. This is undefined, and there are a lot of confused
interpretations – the compiler is free to do what it wants. Keep it simple, avoid
areas of tangled interpretation. Don’t left shift negative values. Be familiar with
unclear portions of the standards and avoid them.

Knowledge Check: Integers

47

• What’s wrong with this code:
• for(int i = 0; i<1000; i++) { cout << “the value of somefunc is “ << somefunc(

(unsigned int)i) << “\n”; }

①It is in C++ when it doesn’t need to be
②It’s missing a cast
③The C-style cast in C++ is to be avoided
④The cast will thrown an exception if the code is changed to “for (int i = -1000; i <

1; i++)

Correct answer: 3.

Knowledge Check: Casts

48

• Which of the following are potential security issues
with concurrent coding – check all that apply:

1. Makes the code harder to understand
2. Deadlock can result in Denial of Service attacks
3. Subtle process timing issues can increase the opportunities for side-channel attacks
4. Variables can be left with sensitive values
5. The compiler can manipulate security-sensitive code in unexpected ways
6. Thread privileges can cause security violations

Correct answer: 2., 3., 5.

Knowledge Check: Concurrency

49

• What is wrong with the following code? Check all that
apply:

1. static const int len1=1000;
2. char buffer[len1];
3. fgets(buffer,len1,stdin);
4. if (checkfileaccess(buffer) == ACCESS_OK) {
5. int newfile = open(buffer,O_RDWR);
6. read(newfile, buffer, len1);
7. close(newfile);
8. }

① Data is read into the buffer used for the filename
② The file is opened for writing even though data is only read
③ Open and read are used instead of fopen and fread
④ There is a TOCTOU error
⑤ Untrusted input is used as a file path without canonicalization and checking

Correct answer: 2., 4., 5.

Knowledge Check: File Systems

50

• Where should/could an assert be added in the following
code:

1. static const int len1=1000;
2. char buffer[len1];
3. fgets(buffer,len1,STDIN);
4. if (checkfileaccess(buffer) == ACCESS_OK) {
5. int newfile = open(buffer, O_RDWR);
6. read(newfile, buffer, len1);
7. close(newfile);
8. }

① Line 3.: It should read “assert(fgets(buffer,len1,STDIN)!=NULL);”
② Between lines 5. and 6.: “assert(newfile != -1);”
③ Both 1. and 2.
④ None of the above

Correct answer: only 2. If the assert is added to line 3., as in answer (1), the fgets call could be omitted. Never use an expression with a side-
effects as an argument to assert()

Knowledge Check: Asserts

51

Thank You

	Slide Number 1
	Introduction
	The Goals of Using Secure Coding Methods
	Categories
	String Functions
	String Functions (continued)
	String Functions (continued)
	String Functions (continued)
	String Functions (continued)
	Formatted String Functions
	Formatted String Functions (continued)
	Tainted Strings
	Tainted Strings (continued)
	Arrays and Buffers
	Arrays and Buffers (continued)
	Arrays and Buffers (continued)
	Arrays and Buffers (continued)
	Arrays and Buffers (continued)
	Dynamic Memory
	Dynamic Memory (continued)
	Pointers
	Integers
	Integers (continued)
	Integers (continued)
	Casts
	Concurrency
	Paths and Files
	Paths and Files (continued)
	Using assert()
	Tools
	Other General Security Issues
	References
	Note about Knowledge Checks
	Knowledge Check: Strings
	Knowledge Check: Strings
	Knowledge Check: Formatted String Functions
	Knowledge Check: Formatted String Functions
	Knowledge Check: Tainted Strings
	Knowledge Check: Tainted Strings
	Knowledge Check: Arrays and Buffers
	Knowledge Check: Arrays and Buffers
	Knowledge Check: Dynamic Memory
	Knowledge Check: Dynamic Memory
	Knowledge Check: Pointers
	Knowledge Check: Integers
	Knowledge Check: Integers
	Knowledge Check: Casts
	Knowledge Check: Concurrency
	Knowledge Check: File Systems
	Knowledge Check: Asserts
	Slide Number 51

