
GStreamer Analysis

Introduction
Performance
Plugin
Object Model
Architecture
GST-Element
GST-Element Pad
GST-Bin
GST-Pipeline
GST-Bus
GST-Bus Message Types
GST Communication Mechanisms
Communication Control Flow
GST-Element Types
GST-Element States
Porting

Introduction

The purpose of this document is to simplify some of the terms, descriptions, and mechanisms of the GStreamer core. It will, initially, serve as a foundation
to help model and test the GStreamer implementation in the RDK/HAL system.

This document describe the details of the following,

API for multimedia applications
Plugin architecture
Pipeline architecture
Mechanism for media type handling, negotiation, synchronization

Performance

Data passing between plugins is lightweight (pointers reduce overhead)
Shared memory mechanism
Sub-buffers split buffers into manageable pieces (blocking)
Dedicated streaming threads with scheduling handled by the kernel

Plugin

Protocol handler (loaded at runtime)
Sources: audio/video (protocol plugins)
Formats: parsers, formaters, muxers, demuxers, metadata, subtitles
Codecs: coders/decoders

1.
2.

1.
2.

Filters: converters, mixers, effects
Sinks: audio/video (protocol plugins)

Object Model

Adheres to GObject (Glib 2.0)
Uses signals and object properties

Architecture

GST-Element

Has one specific function (read, decode, ...)
Has two Pads:

source (output)
sink (input)

GStreamer core views elements as blocks of bytes
Linked or chained elements create a pipeline that performs a specific task

GST-Element Pad

Is defined by two properties:

direction: source, sink
availability: always, sometimes (dynamic), on request

1.
a.

2.
a.

3.
a.

4.
a.

1.
2.

ghost pad: a pad from some element in the bin that can be accessed directly from the bin as well.

GST-Bin

A container for a collection of elements (manages the state of all elements within it)
Forwards bus messages from contained elements (errors, tags, EOS)
Simplifies implementing complex pipelines by allowing the break up of the pipeline into smaller blocks

GST-Pipeline

A top-level bin
A generic container that manages the synchronization and bus messages of the contained elements.
Contains a bus by default

GST-Bus

A bus is a simple system that forwards messages from the streaming thread to an application in its own thread context.

GST-Bus Message Types

All messages contain a message , , and .source type time-stamp

Error: fatal message that terminate data-passing
Warning: non-fatal message, but user-visible problems will happen
Information: non-problem notification
End of Stream: emitted when the stream had ended
Tags: emitted when metadata is found in the stream
State-changes: emitted after a successful state change
Buffering: emitted during caching of network-streams
Element: special messages that are unique to certain elements and usually represent additional features.
Application-specific: primarily meant for internal use in applications in case the application needs to marshal information from some thread into
the main thread

GST Communication Mechanisms

Buffer: objects for passing streaming data between elements in pipeline
travel downstream

Events: objects sent between elements or from the application to elements
travel downstream and upstream

Messages: objects posted by elements on pipeline’s message bus (element to application)
handled synchronously from pipeline to bus; asynchronously from bus to application

Queries: allow applications to request information from pipeline
travel downstream and upstream; always handled synchronously

Communication Control Flow

Downstream : src element to sink element
Upstream: sink element to src element

1.
2.
3.

1.
2.
3.
4.

Buffer

Actual media data.

A simple buffer consists of:

Pointers to memory
objects.
Timestamp
Reference count
Flags

Events

Control
information.

Messages

Information on elements or
pipeline.

A message consist of:

Source
Type
Timestamp

Queries

Request for a specific stream property related to progress
tracking.

GST-Element Types

Source: generates data
Filter: performs task on input data to send proper output data (convertors, demuxers, muxers, codecs etc)
Sink: receives data

These 3 types of elements create a simple GST-Pipeline.

Pipelining is an implementation technique whereby multiple instructions are overlapped in execution; it takes advantage of parallelism that exists among
the actions needed to execute an instruction.

GST-Element States

GST_STATE_NULL: default state; no resources are allocated in this state
GST_STATE_READY: an element has allocated all of its global resources within the stream, but the stream is NOT open yet.
GST_STATE_PAUSED: an element has opened the stream, but no actively processing it. (clock does NOT run)
GST_STATE_PLAYING: an element maintains the open stream while processing it. (clock starts)

Porting

The following is a list of components that might be needed to properly test implementation of the HAL GST components

1.
2.
3.
4.
5.
6.

aesdecyrpt
aesencrypt
dtcpdecrypt
dtcpencrypt
httpsink
rbifilter

	GStreamer Analysis

