
WPE

Wayland - What and Why?
Webkit for Wayland
Advantage of WPE over QtWebKit
A Traditional Approach for Rendering
Wayland Approach for Rendering
Wayland - What and Why?
Why Westeros?
Westeros Use Case
Why WPE
WPE Architecture
WPE and Wayland Clients
Code Restructure
Work Accomplished in RDK
Functional Test (HTML5): QTWebkit Vs WPEWebKit
Functional Test(CSS3): QTWebkit Vs WPEWebKit
Repositories
WPE Support with RDK - Recipes
WPE Support with RDK - Build
How to work with WPE

Wayland - What and Why?
Primarily a protocol for compositionof different surfaces/layers.
compositor + display server + window manager.
Uses EGLto avoid OS specific windowing functionality.
Started as a replacement for the X Windowing System (X11).
Unlike X has no rendering API.
Its implementations are lightweightwith a small footprint
Wayland is primarily focused on performance, code maintainability and security

Webkit for Wayland
Wayland provides simple, elegant, graphics compositing integration between different layers using EGL (interface between Khronos rendering APIs
)
Wayland started as a replacement for the X Windowing System (X11).
Wayland is not an implementation but a protocol specification between a display server and its clients
Its implementations are lightweight with a small footprint
Wayland is primarily focused on performance, code maintainability and security

Advantage of WPE over QtWebKit

Newer WebKit= newer features:

Contributions in the “upstream” direction are also important to the growth of the RDK, to attract more development and grow the community.
It’s much faster then QT.
For Gstreamer, we contributed a way to expose the video fragments, e.g. MPEG DASH smooth streaming, from the browser using Media Source 
Extensions (MSEs).

Faster:

WebKit2 w/ Threaded compositor vs. QT single thread WebKit1 architecture.
UI Process, Web Process, Network Process and Database Process

New JavaScript Core optimization feature: “Faster Than Light” JIT
JSC inline with modern day HTML5 development (e.g. better JIT support for closures)

Smaller:

Compared to QTWebkit, WPE is about 30% smaller — around 22 Megabytes,
On average, compared to 32 Megabytes while packing 60% more features



A Traditional Approach for Rendering
In traditional approach, the central role of X-Server and the steps required to get contents on to the screen is presented in below diagram.

Wayland Approach for Rendering

Removed X-Server and the compositor is the display server. Lets the compositor send the input event directly to the client and lets the client sent the 
damage event directly to the compositor.



Wayland - What and Why?
“Wayland is a protocol for a compositor to talk to its client as well as a C lib implementation of that protocol”. Weston is the reference implementation for 
wayland. Westeros is a compositor, a replacement of Weston. This provides clear interface towards graphics and input.



Wayland Process flow:

Why Westeros?
Westeros is smalland simple.
Being small, easier to understand and maintain.
Caters to needs of embedded systems over traditional desktop computing.
Shared library that provides an APIfor creating and operating a compositor.



Use the included sample compositor app OR implement a custom compositor.
Allows an application to create a Wayland display within itself to create what we call an embedded compositor.
Main UI can then control application windowandlifecycle.

Westeros Use Case
Gives the hosting application (MSO Guide) control over the presentation and composition of 3rd party applications.

Why WPE
Newer WebKit= newer features
WebKit2 w/ Threaded compositor vs. QT single thread WebKit1 architecture.
New JavaScript Core optimization feature: “Faster Than Light” JIT
Compared to QTWebkit, WPE is about 30% smaller —around 22 Megabytes.

WPE Architecture



WPE and Wayland Clients

Code Restructure 
Code move:
Source / WPE —> ThirdParty/ WPE & ThirdParty/ WPE-platform
Easier up-streaming
Port acceptance
Refactor WPE to C back-ends
New IPC mechanism



Work Accomplished in RDK
Ported on RPI
MIPS support for BCM targets
Addition of Intel-CE and other BCM configurations
MSE and EME implementation for YouTube leanback
Parity or better than QtWebKit.
Shadow Dom
Wayland Support
Fullscreen API
MIPS JIT Architecture Change
Walyland Reference Backend
Speech APIs & reference implementation
Geolocation
Notifications
PlayReady DRM
Automated test runner
IndexdDB Support
Injected Bundles
Full MSE Compliance
WebCrypto
View Backends for non-Wayland
Gamepad Support

Functional Test (HTML5): QTWebkit Vs WPEWebKit
These tests are based on the site  https://html5test.com/

Functional Test(CSS3): QTWebkit Vs WPEWebKit
These tests are based on the site http://css3test.com/

https://html5test.com/
http://css3test.com/


Repositories

WPE: https://github.com/Metrological/WebKitForWayland
OE recipe: https://github.com/Metrological/meta-metrological
Buildroot: https://github.com/Metrological/buildroot-wpe

WPE Support with RDK - Recipes

Weston:

meta-rdk-ext/recipes-graphics/wayland/

waylandwayland_1.6.0.bbwayland-native_1.6.0.bbwestonweston_1.6.0.bb

Westeros:

meta-rdk-video/recipes-graphics/westeros

westeros.bb westeros.inc westeros-simplebuffer.bbwesteros-simpleshell.bbwesteros-sink.bb

WPE Webkit:

meta-rdk-ext/recipes-extended/wpe-webkit/

wpe-webkit_0.1.bbwpe-webkit_0.2.bb wpe-webkit.inc

WPE Support with RDK - Build

WPE Support is provided with specific image types
Source meta-cmf/setup-environment
Select the required machine configuration
Build the image with WPE package support. E.g.

bitbakerdk-generic-hybrid-wpe-image
bitbakerdk-generic-mediaclient-wpe-image

How to work with WPE

Step 1: Fork WPE on GitHub.com
Step 2: Apply changes on your fork
Step 3: Test your changes

https://github.com/Metrological/WebKitForWayland
https://github.com/Metrological/meta-metrological
https://github.com/Metrological/buildroot-wpe
https://github.com/Metrological/buildroot-wpe
http://waylandwayland_1.6.0.bb
http://wayland-native_1.6.0.bb
http://westonweston_1.6.0.bb
http://westeros.bb
http://westeros-simplebuffer.bb
http://westeros-simpleshell.bb
http://westeros-sink.bb
http://wpe-webkit_0.1.bb
http://wpe-webkit_0.2.bb
http://GitHub.com


Step 4: Submit pull request to WPE master
Step 5: Prepare for comments, rework if necessary
Step 6: Wait for merge notification


	WPE

