RDK Feature Control - RFC

Overview

Before RFC, the only way to disable a new feature in the field was to rollback to the older firmware. This led to a lot of operational overhead. Also there
were lack of options to do a feature deployment in a subset of devices (for eg: only in 100 devices). Also there was lack of options to deliver dynamic
configurations to the box Eg: Whitelist of SSH /SNMP servers, Details of downloadable modules..etc

Using RFC

® Enables quicker roll out of features
® Enables a secure channel for delivering run-time configurations to the device
® Ability to control when the feature needs to be enabled/disabled ? Disable now/ Disable during reboot

Rules &

|Properties

Rules Engine

sTB Transport
(HTTRPS/JSON)
XCONF/DCM
Client
Execution

ENV VAR

This approach breaks down the RFC control flow into segments that have specific responsibilities, in accordance with their component design.

® Rules Engine - a passive platform that responds to a specific request, running a defined set of rules against the incoming set of parameters,
providing generic data results based on the application of the rules.

® Transport - provides the conduct of signalling and data parameters from client to cloud and back

® Execution - application of the RFC parameters on the client

An RFC transaction begins with the initiation event that causes the rules engine to evaluate a given rule set. In conjunction with the existing telemetry
initialization, which is a HTTP GET sent directly from the client to DCM, the RFC request will be sent at a specific point in the client startup process. The
response from XCONF/DCM will include the new JSON data structure that defines the feature control data for that specific client.



Key aspects of the client RFC processing:

® HTTP Get to XCONF/DCM requesting RFC settings
Response from DCM is parsed and the configuration data extracted
© includes "featureControl" data block
© looks for "effectivelmmediate” flag, evaluates if change in corresponding enable state, triggers reboot
® The JSON config data supports 2 modes for the client control: Environment Variable, or TR-181 data paamaters
® At feature startup, the feature modules will look at the Environment Variable (e.g. RFC_ENABLE_LSA = true) or TR-181 parameter, to determine
enable/disable state

Use cases

The primary use case for RFC is the enable/disable of a specific settop feature (e.g. XB Smart Cloud, or LSA on settops), providing a remote control
capability to support a progressive roll-out of a feature, as well as roll-back of an already enabled feature. The execution layer supporting the enable
/disable can take one of two forms: using a system agent to run a specific process in a linux/Yocto model directly (using systemd or the like), or to signal
an existing process to control the behavior of feature specific processing. The Smart Cloud feature in RDKB is a stand-alone process, and the client-side
processing of the enable flag in TR-181 will use systemd to start that process. Alternatively, the LSA feature is an extension of the RMF component, and
therefore, doesn't fit the stand-alone process model, and so will use a feature-specific method for executing the enable function.

How it works

i R n

CPE Device

[FH

. The RFC process is controlled through rfc-config service

. RFCBase.sh communicates with xconf server and fetches the predefined feature data.

. After parsing the feature control JSON messages, RFCBase.sh will create system level & individual configuration files with the key and values.
RDK modules pick the environment variables using RFC API or using the script and toggle the relevant feature.

FEAN NI



	RDK Feature Control - RFC

