RDK Feature Control - RFC

Overview

Before RFC, the only way to disable a new feature in the field was to rollback to the older firmware. This led to a lot of operational overhead. Also there
were lack of options to do a feature deployment in a subset of devices (for eg: only in 100 devices). Also there was lack of options to deliver dynamic
configurations to the box Eg: Whitelist of SSH /SNMP servers, Details of downloadable modules..etc

Using RFC

® Enables quicker roll out of features
® Enables a secure channel for delivering run-time configurations to the device
® Ability to control when the feature needs to be enabled/disabled ? Disable now/ Disable during reboot

Rules &

|Properties

Rules Engine

sTB Transport
(HTTRPS/JSON)
XCONF/DCM
Client
Execution

ENV VAR

This approach breaks down the RFC control flow into segments that have specific responsibilities, in accordance with their component design.

® Rules Engine - a passive platform that responds to a specific request, running a defined set of rules against the incoming set of parameters,
providing generic data results based on the application of the rules.

® Transport - provides the conduct of signalling and data parameters from client to cloud and back

® Execution - application of the RFC parameters on the client

An RFC transaction begins with the initiation event that causes the rules engine to evaluate a given rule set. In conjunction with the existing telemetry
initialization, which is a HTTP GET sent directly from the client to DCM, the RFC request will be sent at a specific point in the client startup process. The
response from XCONF/DCM will include the new JSON data structure that defines the feature control data for that specific client.



Key aspects of the client RFC processing:

® HTTP Get to XCONF/DCM requesting RFC settings
Response from DCM is parsed and the configuration data extracted
© includes "featureControl" data block
© looks for "effectivelmmediate” flag, evaluates if change in corresponding enable state, triggers reboot
® The JSON config data supports 2 modes for the client control: Environment Variable, or TR-181 data paamaters
® At feature startup, the feature modules will look at the Environment Variable (e.g. RFC_ENABLE_LSA = true) or TR-181 parameter, to determine
enable/disable state

Use cases

The primary use case for RFC is the enable/disable of a specific settop feature (e.g. XB Smart Cloud, or LSA on settops), providing a remote control
capability to support a progressive roll-out of a feature, as well as roll-back of an already enabled feature. The execution layer supporting the enable
/disable can take one of two forms: using a system agent to run a specific process in a linux/Yocto model directly (using systemd or the like), or to signal
an existing process to control the behavior of feature specific processing. The Smart Cloud feature in RDKB is a stand-alone process, and the client-side
processing of the enable flag in TR-181 will use systemd to start that process. Alternatively, the LSA feature is an extension of the RMF component, and
therefore, doesn't fit the stand-alone process model, and so will use a feature-specific method for executing the enable function.

How it works
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. The RFC process is controlled through rfc-config service

. RFCBase.sh communicates with xconf server and fetches the predefined feature data.

. After parsing the feature control JSON messages, RFCBase.sh will create system level & individual configuration files with the key and values.
RDK modules pick the environment variables using RFC API or using the script and toggle the relevant feature.
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