Telemetry 2.0 support in RDKB RPI

® Introduction
® Architecture Overview
© Telemetry 2.0
© Overview of Instrumenting RDKB components with T2 shared library (commonlib) APIs:
© T2.0 Common Library
® TR-181 DataModel
® Types of Markers
® T2 Report Profiles
© Profiles Set Properties
= profiles
= Profile
® name
® versionHash
® value
© Description
o Version
© Protocol
© EncodingType
© ReportingInterval
o ActivationTimeOut
© TimeReference
© GenerateNow
O Parameter
° HTTP
© JSONEncoding
© Examples
" Example 1
" Example 2
" Example 3
= Example 4
© T2 ReportProfilesMsgPack

Introduction

As part of Telemetry 2.0 , a marker event system has been added to reduce grepping of log files and to improve telemetry handling performance.
Following are major aspects of the marker event system:

Configuration

The XConf/DCM response TelemetryProfile definition has been extended to indicate the source of a marker for report generation is the event system.
When the TelemetryProfile "type" field equals "<event>" the T2 component will not include the marker in the log file grep process. If the "type" field is set to
"<event>", then the "content" field is set to the name of the component.

When the T2 component converts a TelemetryProfile to a report profile at .BulkData.Profile.{i}. it creates a Parameter.{i}. entry for each marker . The Use
field is set for marker event handling by the T2 component.

Example

Existing marker with log file as the source:

"telemetryProfile": [{
"header": "bootuptine_CientConnect Conplete_split",
"content": "Cient_Connect_conplete:",
"type": "LMtxt.log",
"pol | i ngFrequency": "0" },

Updated marker with event feed as the source; "type" and "content" field are changed:

"telenetryProfile": [{

"header": "bootuptine_ClientConnect Conplete_split",
"content": "ccsp-Imlite",
"type": "<event>",

"pol | i ngFrequency": "0O"
}

A shared library is used by components to send targeted marker occurrences through an event feed to the T2 component.

Architecture Overview

Telemetry 2.0

send JSQN report to xconi server 4

T 2.0 Component T2 DM parameters ——

KCONF configuration can
define:

1. Markers from Log file
search

TR-181 Get's
2. data from TR-181
) |

snd abessau dsao

3. data from component
events

T2 stil supports grep markers for DCM & T2 profiles, but configs can use events instead

Log file
Log file

Log file

XCONF

write 10 log

Overview of Instrumenting RDKB components with T2 shared library (commonlib) APIs:

T2 Shared library (commonlib)
Component A t2_event_s{char" marker, char* value) i :
Reporting String type split Marker
N
Component B t2_event_f{char® marker, double value) _' |
Reporting Double type split Marker
8
R H
Component C 12_event_d{char* marker, int value > s
Reporting Integer type split Marker: - & CcspBaself_SendTelemetry c
L) glg DataSignal c
g ‘:‘7 {bus_handle, 5 ‘
3 & telemetry data) = > T2.0 Component
Component D t2_event_d(char* marker, 1) o = ‘
Reporting Count Marker g 3 B
= u
5
Script A 12ValNotify "Marker” "Value™ o
Reporting split Marker 1
'\ J
Script B t2CountNotify "Marker™
Reporting Count marker
T2.0 Common Library
*APIs for component metrics and events
t2_event_s(char*eventName, char* value)
t2_event_d(char*eventName, int value)
t2_event_f(char*eventName, double value)
S.NO DataModel Description DataType
1 Device.Devicelnfo.X_RDKCENTRAL-COM_RFC.Feature.Telemetry.Enable Enable the T2 Process Boolean

2 Device.Devicelnfo.X_RDKCENTRAL-COM_RFC.Feature.Telemetry.Version ‘2.0’ : Operates only with legacy support String
‘2.0.1’ : Operates with T2 report profile and legacy support

3 Device.Devicelnfo.X_RDKCENTRAL-COM_RFC.Feature.Telemetry.ConfigURL | https://xconf.xcal.tv/loguploader/getT2Settings String

T2 Report Profile

S.NO DataModel Description DataType
1 Device.X_RDKCENTRAL-COM_T2.ReportProfiles Value must be a JSON configuration blob String
2 Device.X_RDKCENTRAL-COM_T2.ReportProfilesMsgPack ' Value must be a JSON configuration blob in base 64 encoded msgpack format = String

Types of Markers

The markers are of 3 types .
1.Split based markers.

2. Count based markers

3. TR-181 based markers.

Marker Sample configuration from xconf Description with respect to sample
Type configuration
Count {"header":" RF_ERRCR | PV4Pi ngFai | ed", "content": "Pi ng to I Pv4 Gateway Expects the occurrence count of content
based Address are failed","type":"Sel fHeal.txt.0","pollingFrequency":"0"} "Ping to IPv4 Gateway Address are failed"
markers
Split {"header": "bootupti ne_d i ent Connect Conpl ete_split","content":" Expects the value after content
based Client_Connect_conplete:","type":"LMtxt.log", "pollingFrequency":"0"} "Client_Connect_complete:"
markers
TR-181 {"header" : "CMMAC_split","content" : "Device.Devicelnfo.X_COMCAST-COM_CM_MAC"," Markers whose type is configured as
based type" : "<message_bus>","pollingFrequency":"48"} "<message_bus>"
markers

In T2.0, the aim is to instrument possible number of split and count based markers from component side. These are termed as event markers. Can be
classified as one more type under the classification of markers.

Once a marker is instrumented from component side, its configuration on xconf will be changed from the configured file name to "<event>"in 'type:'
section.

Example:

{"header": "bootuptinme_C i ent Connect Conpl ete_split","content":"ccsp-Imlite","type": <event>","pollingFrequency":"
0"}

Find the correct place to report a marker .

Previously in DCA telemetry, a marker is reported based on the xconf configured "content” string - when the content string is found in
corresponding configured filename configured under 'type:' section .

/* Refer : {"header": "WIFI_INFO_Hotspot_client_connected", "content": "Added case, Client with:", "type": "Hotspotlog.txt.0","pollingFrequency":"0"}
*/

o So, find the right place where the content string is being written to the corresponding log file in order to event a marker in T2.0.

In https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/hotspot/+/35833/3/source/hotspotfd/cosa_hotspot_dml.c (Line
number 85 gives the idea)
CcspTracelnfo(("Added case, Client with MAC:%s will be added\n", |_cMacAddr));

© Once the place is decided, use the right API to report Marker and values.
® For markers without "_split" suffix, the marker data is just a count of the number of times the marker is received. In this case,
the t2_event_d API can be used because the marker data passed to the APl is not important.

Example: t2_event_d("WIFI_INFO_Hotspot_client_connected", 1); in https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/hotspot/+/35833/3
/source/hotspotfd/cosa_hotspot_dml.c

® For markers with "_split" suffix, the marker data is important, so use the API most appropriate to the marker data. For instance, if the marker data
is a string, use t2_event_s. But if marker data is numeric, use one of t2_event_d or t2_event_f. Also note that testing must ensure the string
used for marker data matches the string expected by legacy telemetry.

Example : t2_event_s("acs_split", pStr); in https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspTr069Pa/+/35825/4/source-embedded
/DslhManagementServer/ccsp_management_server_pa_api.c line 585

Use appropriate APIs to event markers and values.

https://xconf.xcal.tv/loguploader/getT2Settings
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/hotspot/+/35833/3/source/hotspotfd/cosa_hotspot_dml.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/hotspot/+/35833/3/source/hotspotfd/cosa_hotspot_dml.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/hotspot/+/35833/3/source/hotspotfd/cosa_hotspot_dml.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspTr069Pa/+/35825/4/source-embedded/DslhManagementServer/ccsp_management_server_pa_api.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspTr069Pa/+/35825/4/source-embedded/DslhManagementServer/ccsp_management_server_pa_api.c

In RDKB we have logs coming from both scripts and component's code (code in C). From which markers are reported/grepped.
List of APIs :

© To report markers from components
= t2_event_s(char* marker, char* value) - To send _split marker with string value to T2

Usage: t2_event_s("xh_mac_3_split", "xh_MAC_value”);
t2_event_s("xh_mac_3_split", strBuff); /* where strBuff contains the string value to be reported for this marker */
Sample Reviews:

https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspWifiAgent/+/30422/1/source/TR-181/sbapi/wifi_monitor.c where telemetryBuff is a
an array of characters declared, reset and copied with string value to be reported.
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspTr069Pa/+/35825/4/source-embedded/DslhManagementServer
/ccsp_management_server_pa_api.c where pStr is a buffer already used in the code.

NOTE: The instrumented component could use a static buffer or do a buffer malloc itself; but T2 common lib makes its own copy regardless, so
instrumented component must clean up after itself.

= {2 _event_f(char* marker, double value) - To send marker with double value to T2
Usage: t2_event_d("HWREV_split", 2.2);

= t2_event_d(char* marker, int value) - To send marker with integer value to T2 (or) to report count based
markers
Usage: t2_event_d("WIFI_INFO_Zero_5G_Clients", 1); /* To report counter based markers-- The value is reported as
"1t
t2_event_d("Total_5G_clients_split", num_devs); /* To report integer type split markers */
Sample Review: https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspWifiAgent/+/30422/1/source
/TR-181/sbapi/wifi_monitor.c

O To report markers from Scripts.
= t2ValNotify "Marker" "Value" - To report split based markers
Usage: t2ValNotify "LOAD_AVG_ATOM_split" "$LOAD_AVG_15"
Sample Review: https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/TestAndDiagnostic/+/30495/1/scripts
/log_mem_cpu_info.sh

" t2CountNotify "Marker" - To report count based markers.
Usage: t2CountNotify "SYS_ERROR_NotRegisteredOnCMTS"
Sample Review: https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/TestAndDiagnostic/+/30495/1/scripts
[corrective_action.sh

Must Check Notes
1.While instrumenting components

= |f you are defining a character array buffer to store the value corresponding to marker , Make sure Maximum buffer size is
allocated, And is reset with "\0' before and after its use.
Example: "telemetryBuff" usage in https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspWifiAgent/+/30422/1
/source/TR-181/sbapi/wifi_monitor.c
In many cases, an existing buffer already being built/used within the component can be used rather than necessitating creation
of a new buffer; see https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspTr069Pa/+/35825/4/source-
embedded/DslhManagementServer/ccsp_management_server_pa_api.c

" To Report count based markers , The value should be mentioned as "1" while using t2_event_d() API.

2. While instrumenting Scripts

Source the utility script /lib/rdk/t2Shared_api.sh

Invoke :
t2ValNotify "Marker" "Value" - To report split based markers
t2CountNotify "Marker" - To report count based markers.

Example: Refer https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/sysint/+/38359/8/uploadRDKBLogs.sh

T2 Report Profiles

A Telemetry 2.0 Report Profile is a configuration, authored in JSON, that can be sent to any RDK device which supports Telemetry 2.0. A
Report Profile contains properties that are interpreted by the CPE in order to generate and upload a telemetry report. These properties define the details of
a generated report, including:

® Scheduling (how often the report should be generated)

https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspWifiAgent/+/30422/1/source/TR-181/sbapi/wifi_monitor.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspTr069Pa/+/35825/4/source-embedded/DslhManagementServer/ccsp_management_server_pa_api.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspTr069Pa/+/35825/4/source-embedded/DslhManagementServer/ccsp_management_server_pa_api.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspWifiAgent/+/30422/1/source/TR-181/sbapi/wifi_monitor.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspWifiAgent/+/30422/1/source/TR-181/sbapi/wifi_monitor.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/TestAndDiagnostic/+/30495/1/scripts/log_mem_cpu_info.sh
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/TestAndDiagnostic/+/30495/1/scripts/log_mem_cpu_info.sh
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/TestAndDiagnostic/+/30495/1/scripts/corrective_action.sh
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/TestAndDiagnostic/+/30495/1/scripts/corrective_action.sh
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspWifiAgent/+/30422/1/source/TR-181/sbapi/wifi_monitor.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspWifiAgent/+/30422/1/source/TR-181/sbapi/wifi_monitor.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspTr069Pa/+/35825/4/source-embedded/DslhManagementServer/ccsp_management_server_pa_api.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/CcspTr069Pa/+/35825/4/source-embedded/DslhManagementServer/ccsp_management_server_pa_api.c
https://code.rdkcentral.com/r/c/rdkb/components/opensource/ccsp/sysint/+/38359/8/uploadRDKBLogs.sh

® Parameters (what key/value pairs should be in the report)
® Encoding (the format of the generated report)
® Protocol (protocol to use to send generated report)

Profiles Set Properties

Property Type Required

profiles array | Required

profiles
An array of profile objects that each defines a Telemetry 2.0 Report Profile.
profiles

® isrequired
® Type: an array of profile

profiles Constraints

maximum number of items: the maximum number of items for this array is: 10

Profile
profile

® s optional
®* Type: obj ect

Profile Properties

Property Type Required
name string Required
versionHash ' string Required

value obj ect ' Required

name
Name of the Profile. This is value is accessible from within the Report Profile as dataModel parameter "Profile.Name".
name

® is optional
® Type:string

versionHash
Unique value that is expected to change when anything within the Report Profile is changed.
ver si onHash

® s optional
® Type:string

value
The JSON representing this Report Profile.
val ue

® s optional
® Type: obj ect (JSON object which is a T2 Report Profile)

Property Type Required
Description string Optional

Version string | Optional

Protocol string Required
EncodingType string | Required
Reportinginterval | i nt eger = Optional

ActivationTimeOut ' i nt eger | Optional

TimeReference string | Optional
GenerateNow bool ean ' Optional
Parameter array Required
HTTP obj ect Optional

JSONEnNcoding obj ect Optional

Description
Text describing the purpose of this Report Profile.
Descri ption

® s optional
® Type:string

Version

Version of the profile. This value is opaque to the Telemetry 2 component, but can be used by server processing to indicate specifics about data available
in the generated report.

Ver si on

® s optional
® Type:string

Protocol
The protocol to be used for the upload of report generated by this profile.
Pr ot ocol

® isrequired
® Type:string

Protocol Constraints

enum: the value of this property must be equal to one of the following values:

Value Explanation

"HTTP" | When Protocol is equal to HTTP, an HTTP element is expected to occur within the Profile.

EncodingType
The encoding type to be used in the report generated by this profile.
Encodi ngType

® isrequired
® Type:string

EncodingType Constraints

enum: the value of this property must be equal to one of the following values:

Value Explanation

"JSON' | When EncodingType is equal to JSON, a JSONEncoding element is expected to occur within the Profile.

Reportinginterval

The interval, in seconds, at which this profile shall cause a report to be generated.

Reportingl nterval

® s optional
® Type:int eger

ActivationTimeOut

The amount of time, in seconds, that this profile shall remain active on the device. This is the amount of time from which the profile is received until the
CPE will consider the profile to be disabled. After this time, no further reports will be generated for this report.

Acti vati onTi neQut

® s optional
® Type:integer

TimeReference
TBD. Must be value of "0001-01-01T00:00:00Z" for Telemetry 2.0.

Ti meRef erence

® s optional
® Type:string

TimeReference Default Value

The default value is:

"0001-01-01T0O: 00: 00Z"

GenerateNow

When true, indicates that the report for this Report Profile should be generated immediately upon receipt of the profile.
Gener at eNow

® s optional
®* Type: bool ean

GenerateNow Default Value

The default value is:

fal se

Parameter

An array of objects which defines the data to be included in the generated report. Each object defines the type of data, the source of the data and an
optional name to be used as the name (marker) for this data in the generated report.

Par anet er

® isrequired
® Type:object[]

Parameter Type
obj ect (Parameter Definition)
Parameter Constraints

maximum number of items: the maximum number of items for this array is: 800

HTTP
HTTP Protocol details that will be used when Protocol="HTTP".
HTTP

® s optional
® Type: obj ect

HTTP Type

obj ect

JSONEnNcoding

JSON Encoding details that will be used when EncodingType="JSON".
JSONENncodi ng

® s optional
® Type: obj ect

Examples

Example 1

Simple example to illustrate the JSON structure. The actual "value" object would be in the form of valid JSON representing a T2 report profile.

{
"profiles": [
{
"nane": "Exanple_profile_1",
"versi onHash": "profilelHash111",
"value": {JSON representing a Report Profile}
},
{
"name": "Exanple_profile_2",
"versionHash": "profil e2Hash111",
"val ue": {JSON representing a Report Profile}
}
]
}
Example 2

A profile set containing three profiles, "LMLITE_primer_TEST", "RDKB_CCSPWifi_Profile" and "RDKB_SelfHeal_Profile".
Note that an abbreviated set of parameters is used for each profile for illustrative purposes, therefore, these may not represent desired production profiles.

"value" objects would be in the form of valid JSON representing a T2 report profile.

{
"profiles": [{
"nane": "LMI TE_ pri ner _TEST",

"versionHash": "ImiteHash11l1l",

"val ue": {
"Description": "Areport for a few CCSP-LM LI TE details",
"Version": "0.1",
"Protocol": "HTTP",

"Encodi ngType": "JSON',
"Reportinglnterval": 60,
"Ti meRef erence": "0001-01-01TO00: 00: 00Z",
"ActivationTi neQut": 90,
"Paraneter": [{
“type": "grep”,
"marker": "SYS _SH TADProcess_restart",
"search": "Restarting CcspTandDSsp",
"logFile": "LMtxt.0",

"use": "absol ute"
boA
"type": "event",
"nane": "LM.ite_caught_wi fi_di sconnect",
"event Nane": "W FI _I NFO clientdi sconnect”,
"conponent": "ccsp_Inlite",
"use": "count",
"report Empty": false
boA

"type": "dataMdel ",

"nane": "UPTI ME",

"reference": "Device. Devicelnfo.UpTi me",
" "absol ut e"

use":
H,
"HTTP": {
"URL": "http://35.161.239. 220/ xconf/tel emetry_upl oad. php",
" Conpression": "None",
"Met hod": "POST",
"Request URI Paraneter": [{
"Nane": "profil eNane",

http://35.161.239.220/xconf/telemetry_upload.php

"Ref erence": "Profile. Nane"

}H

H

" JSONEncodi ng": {
"Report Format": "NaneVal uePair",
"Report Ti nestanp”: "None"

}

"versionHash": "wifi
"val ue": {

nane": "RDKB_CCSPW fi_Profile",

Hash111",

"Description": "Report to check WFi Paraneters",

"Version": "1",

"Protocol ": "HTTP",

"Encodi ngType":

"JSON',

"Reportinglnterval": 180,

"Ti meRef erence":
"Paraneter": [{

"0001-01-01T00: 00: 00Z",

"type": "dataMdel ",

"reference":

boA

"Device. WFi . Radi 0. 1. St at s. X_COMCAST- COM _Noi seFl oor"

"type": "dataModel ",

"reference":

boA

"Device. WFi.Radio. 2. Stats. X_COMCAST- COM Noi seFl oor "

"type": "event",
"event Nane": "2CclientMac_split",
"conponent": "ccsp_wi fiagent",
"use": "absol ute"

oA
"type": "event",
"event Name": "5CclientMac_split",
"conmponent": "ccsp_wi fiagent"”,
"use": "absol ute"

boA
"type": "event",

"name": "wifiradio WFI_COUNT",

"event Nane":
"conmponent " :

"W FI _MAC_1_TOTAL_COUNT: 0",
"ccsp_wifiagent",

"use": "count",
"report Enpty": false

H

"type": "dataModel ",
"name": "UPTI ME",

"reference":

"Devi ce. Devi cel nfo. UpTi ne",

"use": "absol ute"

1,
"HTTP": {

"URL": "http://35.161.239. 220/ xconf/tel emetry_upl oad. php",
" Conpr essi on": "None",

“Met hod": " POST",

"Request URI Paraneter": [{

" Name" :

"profil eNane",

"Ref erence": "Profile. Nane"

boA
"Name" :

"report Version",

"Reference": "Profile.Version"

}H
}

" JSONEncodi ng":

{

"Report Format": "NaneVal uePair",
"Report Ti mestanp”: "None"

"name": "RDKB_Sel f Heal _Profile",
"hash": "sel f Heal Hash2",

"val ue": {
"Description": "Report to check SelfHeal Paraneters",
"Version": "2",
"Protocol ": "HITP",

"Encodi ngType":

"JSON',

"Reportinglnterval": 180,

"Ti meRef erence":
"Paraneter": [{

"0001-01-01T00: 00: 00Z",

http://35.161.239.220/xconf/telemetry_upload.php

"type": "dataMdel ",

"name": "Profile",

"reference": "Device. Devicel nfo. X RDK. RDKPr of i | eNane"
boA

"type": "dataMdel ",

"name": "Time",

"reference": "Device. Tinme.CurrentLocal Ti ne"
boA

"type": "dataMdel ",

"name": "mac",

"reference": "Device. Devicel nf o. X_ COMCAST- COM WAN_NAC"
boA

"type": "dataMdel ",

"nanme": "erouterlpv4",

"reference": "Device. Devicel nf o. X COMCAST- COM WAN_| P"
boA

"type": "dataMdel ",

"nanme": "erouterlpve",

"reference": "Device. Devicel nf o. X COMCAST- COM WAN_| Pv6"
boA

"type": "dataMdel ",

"name": "Partnerld",

"reference": "Device. Devicel nfo. X_RDKCENTRAL- COM Syndi cati on. Partner|d"
boA
"type": "dataMdel ",
"nanme": "Version",
"reference": "Device. Devicel nfo. Sof t war eVer si on"
boA
"type": "dataMdel ",
"nanme": "Accountld",
"reference": "Device. Devi cel nf o. X RDKCENTRAL- COM RFC. Feat ur e. Account | nf o. Account | D'
boA
"type": "dataMdel ",
"name": "MAC',
"reference": "Device. Devi cel nf o. X COMCAST- COM CM_MAC'
boA
"type": "dataMdel ",
"reference": "Profile. Name"
oA
"type": "dataModel ",
"reference": "Profile.Version"
boA
"type": "dataMdel ",
"reference": "Device. Devicel nfo. UpTi ne",
"use": "absol ute"
boA
"type": "event",
"event Nane": " SYS_ERROR _AdvSecurity_Not Runni ng",
"conponent": "test_and_di agnostics",
"use": "absol ute"
oA
"type": "event",
"event Name": "SYS_SH |ighttpdCrash”,
"conmponent": "test_and_di agnostics",
"use": "count",
"report Enpty": false
b
"type": "dataModel ",
"nane": "WAN_SSH STATUS",
"reference": "Device. Devi cel nf o. X_RDKCENTRAL- COM Syndi cat i on. WANsi deSSH. Enabl e",
"use": "absol ute"
.
"HTTP': {
"URL": "http://35.161.239. 220/ xconf/tel emetry_upl oad. php",
" Conpr essi on": "None",
"Met hod": "POST",
"Request URI Paraneter": [{
"Nanme": "deviceld",
"Ref erence": "Device. Devi cel nf o. X_COMCAST- COM_CM_NMAC'
boA
"Nane": "profil eNane",
"Reference": "Profile. Name"

}H
}

"JSONEncodi ng": {
"Report Format": "NaneVal uePair",
"Report Ti mestanp”: "None"

http://35.161.239.220/xconf/telemetry_upload.php

Example 3

Send an empty set of profiles to remove all Telemetry 2.0 profiles from a device.

{

"profiles": []
}
Example 4

This is an example of a complete Report Profile. The "Parameter” property defines the data to be gathered and reported.

Notice that there are three types of data supported: dataModel, event, and grep. The other properties define scheduling, protocols and encoding of the
generated report.

"Description": "T2.0 WFi data",
"Version": "0.1",
"Protocol": "HTTP",
"Encodi ngType": "JSON',
"Reportinglnterval": 900,
"Ti meRef erence": "0001-01-01T00: 00: 00Z",
"Paranmeter": [{
"type": "dataModel ",
"name": "MAC',
"reference": "Device. Devi cel nf o. X_COMCAST- COM CM _MAC'

b
{
"type": "grep",
"marker": "WFI_BYTESSENTCLI ENTS_1",
"search": "WFI_BYTESSENTCLI ENTS_1: ",
"logFile": "wifihealth.txt"
b
{
"type": "grep",
"marker": "WFI_BYTESSENTCLI ENTS_2",
"search": "WFI_BYTESSENTCLI ENTS_2: ",
"logFile": "wifihealth.txt"
o
{
"type": "event",
"event Nane": "WFI_CwWonfig_1_split",
"conponent": "ccsp-wifi-agent"
b
{
"type": "event",
"event Name": "WFI_CWonfig_2_split",
"conmponent": "ccsp-wifi-agent”
o
{
"type": "dataModel ",
"reference": "Device. WFi.Radio.{i}.OperatingChannel Bandwi dt h"
o
{
"type": "dataModel ",
"name": "WFI_NF_1_split",
"reference": "Device. WFi.Radio. 1. Stats. X_COMCAST- COM Noi seFl oor"
b
{
"type": "dataModel ",
"name": "WFI_NF_2_split",
"reference": "Device. WFi.Radio.2. Stats. X COMCAST- COM Noi seFl oor"
}
1.
"HTTP": {
"URL": "http://35.161.239. 220/ xconf/tel emetry_upl oad. php",
" Conpression": "None",
"Met hod": "POST",
"Request URI Paraneter": [{
"Nane": "profil eNane",
"Reference": "Profile. Name"
H
{ .
"Nane": "reportVersion",
"Reference": "Profile.Version"
}
1
I
"JSONEncodi ng": {
"Report Format": "NaneVal uePair",
"Report Ti nestanp”: "None"
}

T2 ReportProfilesMsgPack

http://35.161.239.220/xconf/telemetry_upload.php

we will add msgPack support to T2.0, such that the T2.0 report profiles will be received in msgPack format. The T2.0 component must
unpack the msgPacked data and use it to create the internal structures to represent the active report profiles.T2 Report Profiles can still be authored in
JSON. They will just need to be sent through a msgPack and base64 process, like at https://toolslick.com/conversion/data/json-to-messagepack#, to get
msgPacked data that has been base64 encoded. Choose Output Type "Base 64".

1. Device.X_RDKCENTRAL-COM_T2.ReportProfilesMsgPack as follows:
a. Parameter Name: Device.X_RDKCENTRAL-COM_T2.ReportProfilesMsgPack
Type: base64 (base64-encoded msgPack)
Access: Read and Write access
Persistence: Not persisted
Factory default: Null string
Usage: When set, T2.0 will use the value of this parameter to configure its T2 active report profiles, as defined in Configuring Active T2.0
Profiles
2. The T2.0 Parameter Device.X_RDKCENTRAL-COM_T2.ReportProfiles that accepts T2 report profiles in JISON format will be deprecated. While
deprecated, if report profiles are received via both ReportProfiles and ReportProfilesMsgPack, the last configuration received will be respected.
3. The T2.0 Component must continue to concurrently support the legacy telemetry report profile received from XConf DCM response in JSON
format.
4. Configuring Active Profiles
a. T2.0 component must decode the base64 encoded Device.X_RDKCENTRAL-COM_T2.ReportProfilesMsgPack value to get the
msgPack binary data
b. T2.0 component must process the msgPack binary data
i. msgPack formatted report profiles must be processed according to the msgPack specification: https://github.com/msgpack
/msgpack/blob/master/spec.md#type-system

https://toolslick.com/conversion/data/json-to-messagepack
https://github.com/msgpack/msgpack/blob/master/spec.md#type-system
https://github.com/msgpack/msgpack/blob/master/spec.md#type-system

	Telemetry 2.0 support in RDKB RPI

