
1.
2.
3.
4.

RDK-C Mobile Application
Introduction:
RDK-C Mobile application will be used to watch live streaming from RPI Camera & Previous recordings from RPI Camera stored in Cloud Servers. In this
mobile application we use protocol for live streaming of video & audio, to play or download the previous recordings from cloud servers.WebRTC HTTP

This mobile app will support android & iOS platforms. This page is dedicated to bring up the overall picture of the mobile app and how it works.*

About WebRTC:
WebRTC, short for Web Real-Time Communication, is both an and a . The WebRTC protocol is a set of rules for two WebRTC agents to API Protocol
negotiate bi-directional secure real-time communication. A similar relationship would be the one between HTTP and the Fetch API. WebRTC the protocol
would be HTTP, and WebRTC the API would be the Fetch API.

To establish WebRTC communication one should involve the below 4 steps:

Signalling
Connecting
Securing
Communicating

These four steps happen sequentially. The prior step must be 100% successful for the subsequent one to even begin. Each of these steps has dedicated
chapters, but it is helpful to understand them at a high level first. Since they depend on each other, it will help when explaining further the purpose of each
of these steps.

:Signalling

 When a WebRTC Agent starts it has no idea who it is going to communicate with and what they are going to communicate about. Signalling solves
this issue! Signalling is used to bootstrap the call so that two WebRTC agents can start communicating. Signaling uses an existing protocol SDP (Session
Description Protocol). SDP is a plain-text protocol. Each SDP message is made up of key/value pairs and contains a list of “media sections”.

 : Connecting

 The two WebRTC Agents now know enough details to attempt to connect to each other. WebRTC then uses another established technology called
ICE. ICE (Interactive Connectivity Establishment) is a protocol that pre-dates WebRTC. ICE allows the establishment of a connection between two Agents.
These Agents could be on the same network, or on the other side of the world. ICE is the solution to establishing a direct connection without a central
server. The real magic here is ‘NAT Traversal’ and STUN/TURN Servers. These two concepts are all you need to communicate with an ICE Agent in
another subnet. Once ICE successfully connects, WebRTC then moves on to establishing an encrypted transport. This transport is used for audio, video,
and data.

Securing:

 Now that we have bi-directional communication (via ICE) we need to establish secure communication. This is done through two protocols that pre-
date . The first protocol is (Datagram Transport Layer Security) which is just TLS over UDP. TLS is the cryptographic protocol used to WebRTC DTLS
secure communication over . The second protocol is (Secure Real-time Transport Protocol). HTTPS SRTP First, WebRTC connects by doing a DTLS
handshake over the connection established by ICE. Unlike HTTPS, WebRTC doesn’t use a central authority for certificates. WebRTC then uses a different
protocol for audio/video transmission called RTP. We secure our RTP packets using SRTP. We initialize our SRTP session by extracting the keys from the
negotiated DTLS session.

Communicating:

 We now have two WebRTC Agents with secure bi-directional communication. we use two pre-existing protocols: RTP (Real-time Transport
Protocol), and SCTP (Stream Control Transmission Protocol). Use RTP to exchange media encrypted with SRTP, and use SCTP to send and receive
DataChannel messages encrypted with DTLS.

Now we are done! You now have bi-directional and secure communication. If you have a stable connection between your WebRTC Agents, this is all the
complexity you may need.

Application Architecture (Live streaming)

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://webrtc.org/

Application Flow (Live streaming)

1.
2.

a.
b.
c.

3.
a.
b.
c.

How to Connect:
To view live streaming video from rpi-camera in your mobile mobile you need to follow the below steps

Step 1: Please download the and install in your android deviceapp-release.apk

Step 2: Please follow the steps from this to start R-PI camera client and peer connection serverURL

Step 3: After successful completion of step 2, Navigate to and hit Enter to start Open_WebRTC/openwebrtc-m72/out/Default ./peerconnection_server
the server

Step 4: SSH into R-PI and enter " " which asks for the server IP & Enter Server IP (Your machine IP where ./peerconnection_client
peerconnection_server is running) and port number as .8888

Console

root@raspberrypi3-rdk-camera:~# peerconnection_client
Inside constructor CustomSocketServer().....
Initialized thread...
"Registering PeerConnectionClient::RegisterObserver()"
Enter server IP Address

Step 5: Open your mobile app and click on scan in live-feed page to get the list of cameras in your network.

Step 6: Select the camera you want to watch the live feed.

Note: Make sure your R-PI board and mobile app should be in the same network.

Mobile App Features
Following are the mobile application features.

Sign-up: To register new user

Sign-in: To enter into the mobile app with valid user credentials.

Dashboard: In this page we are having three sections

Live Feed - To get the live footage from the list of selected cameras.
Recordings - To get the list of previously recorded footage from cloud.

Today - List of current date recordings
Last week - List of recordings up to 1 week
Custom - List of recordings in b/w selected date range

Settings
Camera - Resolution, IP, Storage
User - Add camera, Permissions, Details
Other - Terms & Conditions, Privacy Policy, About, Rating, Logout

Mobile App Screens
 Sign-In: User should enter valid email and password to sign in into the application. Click register to register new user.

https://wiki.rdkcentral.com/download/attachments/162763593/app-release.apk?version=1&modificationDate=1650470104000&api=v2
https://wiki.rdkcentral.com/pages/viewpage.action?pageId=193144864

Sign-up: User should enter valid details then click sign up to register into the application.

 Live Feed: Populates list of available cameras in your network which are connected to server and ready to stream the content

 To view the list of available cameras in the network user should configure the Server IP and Port in Note: Settings tab > Server IP option

 LiveFeed: Lists the available camera connections in your network. Click on any camera name to view the live streaming

 Playing live streaming video from rpi camera in the mobile appLive Streaming:

Recordings: In this user can select the specific option such as today, last week and custom range to view the list of recordings stored in the cloud under
logged in user id or user name. For custom user should suppose to select start and end date to get the list of recordings. In the list of recordings user can
able to see the recording name, recording date and duration of recording.

1.

2.
3.

Settings: From settings user can able to edit :

camera settings such as video resolution for live feed and recordings and IP address, Storage path which is changing the internal storage path for
downloading recordings.
User settings such as camera access permissions, Adding new camera to the account, editing user details like password etc.
Other settings which are app related settings like terms and conditions, Privacy Policy, About application, App rating, Logout.

	RDK-C Mobile Application

