
Splitting out-of-container rdkservices/thunderplugin .so for
memory reduction and expected container security split

Summary and Scope
Terminology
Problem description
Solution and procedure for splitting plugin code
Concrete examples of split

people involved

Adam Stolcenburg Pierre Wielders Bart Catrysse Piotr Marcinkowski

Summary and Scope
Up to now a rdkservice (aka thunderplugin) was typically coded into one single .so file.

While this is fine for rdkservices/plugins used in a "in-process" config this has important drawbacks for rdkservices/plugins used in "out-of-process/out-of-
container" config when it comes to total memory consumption, accounting and security exposure of container running core thunder process(the WPEFrame

process). examples of important rdkservices running out-of-container are , r pluginswork OpenCDMi WebKitBrowse

This page solves this drawback by splitting the out-of-processs/container rdkservices/thunderplugin .so into .so part for WPEframework/thunder process
and part for rdkservice/thunderplugin process and describes convention on how to do this.Impl.so

Terminology
Before starting with a description of the problem we are trying to solve here, first small paragraph about split between thunder core and thunder plugins
into processes & containers & their terminology/names because this can be confusing and it is required to be on same page there before rest of page can
be understood.

The Core thunder process is named process. That process is typically* running in a dedicated container, let's assume for sake of this WPEFramework
explanation that name of that container is container. WPEFRAMEWORK When a thunder plugin is configured as in-process it is running within that WPEFrame

process (and obviously within that same container). Twork WPEFRAMEWORK ypically for robustness (eg cgroup memory limiting) and security design ,
several of the rdkservices/thunderplugin do need to run in separate containers. In that case, the thunder plugin is running in a separate process, normally
with in its name and has to be configured to run out-of-process/out-of-container. The plugin code running as part of the procWPEProcess WPEFramework
ess communicates with the code running as part of the process using . WPEProcess COM RPC

Problem description
Up to now a rdkservice (aka thunderplugin) was typically coded into one single .so file. Most of the plug-in libraries are linked with other libraries Thunder
because they implement their functionality on the basis of functionality provided by other dynamic libraries. When the plugin library is loaded, Thunder
these linked libraries are also loaded, as well as libraries needed by those libraries and so on, until the whole library dependency tree is loaded. For those
plugins that need to run in a different container, it also means that same .so and its defined dependency tree is loaded by both the thunderplugin process
inside its dedicated container (which you would expect) but also loaded by core thunder process inside container. And WPEFramework WPEFRAMEWORK
that core thunder process typically only needs a portion of this library, the part for exposing JSON-RPC part and transforming to COM RPC and much
smaller to zero dependency tree but since there is only one single .so for the plugin defined, it has no other choice then to load that same one - with the
unnecessary big dependency tree - (linker reads .so and its definition requires access to full dependency in tree) or loading will fail. This also results that
that same unnecessary big dependency tree needs to be made available in the container. It exposes the container to WPEFRAMEWORK WPEFRAMEWORK
bigger attack surface and sometimes goes against the security design and very reasons why container was split off in first place. Here are some other
disadvantages that come with with it :

to load individual plugins, the container must mount libraries on which they depend, this causes an excessive number of WPEFRAMEWORK
elements mounted inside this container;
when a plugin is deactivated, the dynamic library that implements the plugin code is unloaded from the process context, but the WPEFramework
libraries on which the library depends are not unloaded;
due to the fact that the process of running an out-of-process plug-in by consists in first loading the plugin library together with its WPEFramework
dependencies on the side and then spawning the that loads the same library and its dependencies in a separate WPEFramework WPEProcess
container, the memory used to load these libraries mostly increases the amount of memory assigned to the container and not the WPEFRAMEWORK
container in which is executed; WPEProcess
the memory consumption is unnecessarily increased in the case of dynamic libraries that create areas. Anonymous/Private Dirty

Solution and procedure for splitting plugin code
Together with Metrological we agreed on a solution for the above problem which is to split the plugin code loaded on the side of WPEFramework and
WPEProcess into two shared libraries.

https://wiki.rdkcentral.com/display/~astolcenburg.contractor
https://wiki.rdkcentral.com/display/~pwielders
https://wiki.rdkcentral.com/display/~bcatrysse01
https://wiki.rdkcentral.com/display/~pmarcinkowski
https://github.com/rdkcentral/rdkservices/tree/main/OpenCDMi
https://github.com/rdkcentral/rdkservices/tree/main/WebKitBrowser
http://Impl.so

This only applies to Thunder plugins that are running in the out-of-process mode

The procedure and convention for such a split are :

In the first step it should be determined what files contain code that is needed by the and what code is needed by the . The WPEFramework WPEProcess W
 will need files that contain implementation as well as code that is needed to initialize and deinitialize the plugin, the code can be PEFramework JSON RPC

recognized by the presence of the macro. Additionally, in most cases, the code that is placed in the file will be SERVICE_REGISTRATION() Module.cpp
needed by both and and . The rest of the code is usually needed only by the .WPEFramework WPEProcess WPEProcess

Once it is known what files are needed by each of those processes, the file of the plugin should be modified in such a way that CMakeLists.txt Thunder
files needed by the are compiled into a dynamic library whose name matches the following pattern:WPEFramework
libWPEFramework[Plugin Name].so
for example:
libWPEFrameworkWebKitBrowser.so

Files needed by the need to be compiled into a dynamic library whose name matches the following pattern:WPEProcess
libWPEFramework[Plugin Name]Impl.so
for example:
libWPEFrameworkWebKitBrowserImpl.so

The important thing is that the dynamic library loaded by the process may not link with dynamic libraries that are not provided by the WPEFramework Thun
 framework.der

The last step of the splitting process is to set the property in the object of the object in the plugin’s file, to a the locator root configuration JSON
name of the library that needs to be loaded by the . Please note that the property of the main object of the plugin’s file must WPEProcess locator JSON
still point to the library that is needed by the process. Plugin's file matches the name of the plugin with extension and is WPEFramework JSON .json
placed in the directory on the rootfs. An exemplary plugin’s file with the modification applied is presented here:/etc/WPEFramework/plugins JSON

{
 "locator":"libWPEFrameworkWebKitBrowser.so", (…)
 "configuration":{ (…)
 "root":{
 "locator":"libWPEFrameworkWebKitBrowserImpl.so", (…)
 } (…)
 } (…)
}

When the thunder-plugin is run in a container, there is also a need to make the dynamic library visible in the container instead of the original library. Impl
For example, in the case of the plugin, the container should mount the WebKitBrowser WPEBrowser usr/lib/wpeframework/plugins

 library instead of the /libWPEFrameworkWebKitBrowserImpl.so usr/lib/wpeframework/plugins/libWPEFrameworkWebKitBrowser.so
library.

Concrete examples of split
 .so split of WebkKitBrowser plugin into and upstreamelibWPEFrameworkWebKitBrowser.so libWPEFrameworkWebKitBrowserImpl.so

d by Metrological, see - RDKDEV-253 Getting issue details... STATUS

 .so split of OCDMi plugin, in process of being upstreamed by Liberty Global and reviewed by Comcast, see https://github.com/rdkcentral
 /rdkservices/pull/2497

Thanks to this we avoid mounting in the the following libraries: WPEFRAMEWORK

.1libocdm.so
.0libgstreamer-1.0.so

.6libffi.so
.0libgmodule-2.0.so

.1libpcre.so
.0librdkloggers.so

.3liblog4c.so
.0libsystemd.so

.2libcap.so
.2libresolv.so

.5liblzma.so
.1librt.so

.0libgobject-2.0.so
.0libglib-2.0.so

.0libgstbase-1.0.so
libnexus.so
libbrcmsvpmeta.so

.0libgstaudio-1.0.so
.0libgsttag-1.0.so

.1libz.so
libb_os.so

http://libWPEFrameworkWebKitBrowserImpl.so
https://jira.rdkcentral.com/jira/browse/RDKDEV-253
https://github.com/rdkcentral/rdkservices/pull/2497
https://github.com/rdkcentral/rdkservices/pull/2497
http://libocdm.so
http://libgstreamer-1.0.so
http://libffi.so
http://libgmodule-2.0.so
http://libpcre.so
http://librdkloggers.so
http://liblog4c.so
http://libsystemd.so
http://libcap.so
http://libresolv.so
http://liblzma.so
http://librt.so
http://libgobject-2.0.so
http://libglib-2.0.so
http://libgstbase-1.0.so
http://libnexus.so
http://libbrcmsvpmeta.so
http://libgstaudio-1.0.so
http://libgsttag-1.0.so
http://libz.so
http://libb_os.so

Notes

 (*) whether or not the core thunder process runs in dedicated container can depend on operator. For Liberty Global it required to be in separate container
for various reasons, one being the security design, core thunder process exposes api's to 3rd party apps via network (ws) and need to restrict attack
surface/thread exposure.

	Splitting out-of-container rdkservices/thunderplugin .so for memory reduction and expected container security split

