
For Operators

Overview

This page provides the details and guidance to the Operators on how to adopt RDK. The step by step procedure for an operator to get an RDK based
Platform up and running is also described in detail.

Product Specifications

The first step to get a fully functional product is to define the product features and see if they meet the standard requirements. See here to know what
are all the features available in RDK-V and can implement based on your requirement. Operator can use this as a guide while engineering the RDK
Operator platform.

Device Firmware

Operators can make use of the details available below to start developing a Yocto build to do the final additions of Operator specific changes to the
device. This will help Operator to add their own final product features as well as Operator specific patches/changes.

Yocto Manifests

Yocto based RDK builds are flexible enough to easily accommodate SoC / OEM / Operator / third party changes. The starting point for the Yocto
builds are a manifest file. The manifest file is an xml file that contains details of the different open embedded Yocto build layers, meta layers , rdk as
well as open source components that needs to be fetched during initial stages (than during bitbake time) as well as the URL locations from where the
data can be pulled. A set of sample manifests that can be used as a template for developing Operator specific manifests are given below

Before You Begin

RDK License

Operators are advised to get into an agreement with RDK Management LLC to obtain

the free license so as to use the complete RDK Code base in their platform. More details

about license is available at . Please email https://rdkcentral.com/licenses/ info@rdkcentr

 if you have additional questions about licenses or membershipal.com

On this Page:

Overview
Product Specifications
Device Firmware
Operator Specific Apps
Operator Specific UI
App Support
Factory Test App
Provisioning Support
Disaster Recovery
Test & Certification of
devices

Error rendering macro 'excerpt-include'

User 'null' does not have permission to view the page.

https://wiki.rdkcentral.com/display/RDK/RDK-V+Features
https://rdkcentral.com/licenses/
mailto:info@rdkcentral.com
mailto:info@rdkcentral.com

File Remarks

1 Device
Specific
Manifest

This is the starting point of the build and is specific to a device/board . If the SoC/OEM has only one target device /board, still it
is recommended to maintain a different manifest for SoC/OEM for keeping it future-proof. Usually it contains references to other
manifest files which will be having specific set of repos

2 SoC
Manifest

This manifest contains meta layer details of SoC and , optionally, some SoC specific repos

3 OEM
Manifest

This manifest contains meta layer details of OEM and , optionally, some OEM specific repos

4 Operator
Manifest

This manifest contains meta layer details for operators and , optionally, some operator specific layers.

5 OE
layers
Manifest

This manifest has details of the basic Yocto Open Embedded layers

6 RDK-V
Manifest

This manifest can contain meta layers specific to RDK & RDK-V and , for EXTERNALSRC cases, the RDK & RDK-V component
repo details too. It might be supplemented with a conf file too

7 Third
party Ap
ps
manifest

This manifest can contain meta layers related to premium streaming applications which are chosen by Operator

The default manifest repo in RDKM Git is at . Operator need to have their own manifest file in this location https://code.rdkcentral.com/r/#/c/manifests/
which will be mentioned in the 'Device specific manifest' - which is the starting point of builds for a particular target device

Operator meta-layer creation

To match the layered structure of Yocto builds, a Operator specific layer is used to include Operator changes and additions. Use the yocto-layer
create sub-command to create a new general layer.

$ yocto-layer create mylayer

There shall be separate device (machine) configuration file (.conf) for each device for the particular chip family for which the layer is intended for. The
general naming terminology for Operator layer is meta-rdk-<soc name>

The device (machine) configuration file shall include corresponding include (.inc) file to get machine configuration details.

Adding the Machine Configuration File for the new Operator

Each meta-* layer should have a conf folder containing the machine configuration we can select during 'source setup-environment' . Optionally it can
also have a class/classes folder for keeping information that is useful to share between metadata files.

To add a machine configuration, you need to add a .conf file with details of the device being added to the conf/machine/ file. In the machine conf file
the basic machine configuration should be defined.

Once the conf files are in place, the layer details need to be added to the corresponding package group file. Based on platform, the package group file
will be grouped into multiple files with one bitbake fiile and multiple append files. Operator can add the Operator layer details to required package
group append files applicable to the target device build to get the features into the final build

Operator Specific Apps

Operators will be having a range of Operator specific applications from simple generic device information apps to Operator specific content
applications. RDK's Yocto based layered structure allows Operators to easily integrate, upgrade and maintain their apps in their RDK based IP Set-top
devices. For more details on App support in RDK, please refer (only for RDK licensee) as well as for the Applications Operator Platform Firmware
engineering details.

Operator Specific UI

https://wiki.rdkcentral.com/download/attachments/162767508/device_specific_manifest.xml.txt?version=1&modificationDate=1633963194000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/device_specific_manifest.xml.txt?version=1&modificationDate=1633963194000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/device_specific_manifest.xml.txt?version=1&modificationDate=1633963194000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/soc_name_layers.xml.txt?version=1&modificationDate=1633963197000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/soc_name_layers.xml.txt?version=1&modificationDate=1633963197000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/oem_name_layers.xml%20%281%29.txt?version=1&modificationDate=1634128124000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/oem_name_layers.xml%20%281%29.txt?version=1&modificationDate=1634128124000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/oe-layers-rdk-next.xml.txt?version=1&modificationDate=1633963195000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/oe-layers-rdk-next.xml.txt?version=1&modificationDate=1633963195000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/oe-layers-rdk-next.xml.txt?version=1&modificationDate=1633963195000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/rdkv.xml.txt?version=1&modificationDate=1633963195000&api=v2
https://wiki.rdkcentral.com/download/attachments/162767508/rdkv.xml.txt?version=1&modificationDate=1633963195000&api=v2
https://code.rdkcentral.com/r/#/c/manifests/
https://wiki.rdkcentral.com/display/RDK/RDK+Video+Accelerator+-+Applications

RDK supports usage of multiple User Interface in the RDK IP Set-top devices. Operators can choose from among the already available UIs that are
available with RDK as well as develop and use their own UI.

Follow the below steps to get Lightning UI running in devices:

Clone and Build Instructions

This section details about how to customize the current UI source code and develop further.

Follow the commands to run the application on you laptop.

Firstly install Lightning CLI
Type lng to confirm the installation. You will see the below output.

$ npm install -g @lightningjs/cli
$ lng
Usage: index lightning-cli <command> [options]

Options:
 -V, --version output the version number
 -h, --help display help for command

Commands:
 create - Create a new Lightning App
 build - Build a local development version of the Lightning App
 serve - Start a local webserver and run a built Lightning App in a web browser
 watch - Watch for file changes and automatically rebuild the App
 dev - Build a local Lightning App, start a local webserver, run a built Lightning App in a web
browser and watch for changes
 docs - Open the Lightning-SDK documentation
 dist [options] - Create a standalone distributable version of the Lightning App
 upload - Upload the Lightning App to the Metrological Back Office to be published in an App Store
 update - Update the Lightning-CLI to the latest version
 help [command] - display help for command

Clone repo

$ git clone "https://code.rdkcentral.com/r/components/opensource/RDK_apps"
$ cd RDK_apps
$ git checkout rdk-next
$ cd accelerator-home-ui
Note: if you are not able to launch offline UI, add .env file inside accelerator-home-ui/ and
add 'LNG_BUNDLER=esbuild' to force the bundler. Make sure you have esbuild dependency (npm install
esbuild)
$ npm install

Build and Host

$ lng build
$ lng serve

App will be hosted on http://127.0.0.1:8080

The RDK Accelerator Home UI version 3 is the latest version () of the RDK reference UI which provides a full featured UI with a modern 3.7
minimalistic design using a dark theme.

New Feature: UIv3.7 Added multi-profile support.

This single UI currently supports IP-STB, Hybrid-STB and TV profile RDK stacks. UI uses DTV Plugin and HDMIInput plugins to distinguish
the platform profile; UI will consider the platform as TV if stack has HDMIInput plugin support, Hybrid STB if DTV plugin is present else the
default IP-STB.
The UI uses Lightning SDK Plugins such as Language, Router, Storage and supports Premium apps such as Amazon, YouTube, Xumo
along with a selection of Lightning apps from the Metrological App Store. It also includes a wide section of settings which allow a user to take
full advantage of the device features such as Audio, Video, Network, Language and more.
To use and to know more about RDK Accelerator Home UI please refer .Accelerator Home UI - v3
Based on resident app reference implementation Operator need to bring up the UI.

http://127.0.0.1:8080/
https://github.com/rdkcmf/RDK_apps/blob/rdk-next/accelerator-home-ui/settings.json#L15
https://wiki.rdkcentral.com/display/RDK/Accelerator+Home+UI+-+v3

1.
a.

b.
2.

1.
2.

3.

What operators need to do if they plan to use Accelerator UI as such (or with minimal changes)?

(Optional): Create an offline and online version of the UI.
Offline can have minimal things (like pair the remote, settings to connect to WiFi etc) which is available even if device is not
connected to Internet.
Online will be the full fledged UI and will be fetched from a server with latest version

Host their UI in their own production server and make RDK use it. For this , operator need to change the URL in this line https://code.
rdkcentral.com/r/plugins/gitiles/rdk/components/generic/appmanager/+/refs/heads/rdk-next/residentapp/residentApp.sh#165

What operators need to do if they plan to use a different UI?

Operator can develop their own UI either using Html or Lightning. Below section stall describe how a Lightning UI can be deployed.
ResidentApp service serves the offline pages from DOCROOT of webserver(lighttpd) running on device. Operator need to install the UI
assets in the DOCROOT and that will be launched by the https://code.rdkcentral.com/r/plugins/gitiles/rdk/components/generic/appmanager/+
/refs/heads/rdk-next/residentapp/residentApp.sh#166 when the device starts up.
To make the device start always with offline UI pages; remove or comment out https://code.rdkcentral.com/r/plugins/gitiles/rdk/components
/generic/appmanager/+/refs/heads/rdk-next/residentapp/residentApp.sh#230.

App Support

Along with the Operator specific apps, Operator can support a lot of generic apps in RDK IP Set-top devices by taking advantage of RDK Support for
Native as well as Web Apps in IP based Set-top platforms. Operator can easily port native apps in their platforms (for some third party apps, Operator
need to obtain certification from those third party) or can host their own app store and then use Web Apps to show content. For more information on
App support in RDK, please refer (only for RDK licensee).Applications

Factory Test App

The Factory Test App is a special standalone application used for production line testing at the TV assembly factory of the OEM manufacturer. It is
embedded directly in the firmware image that gets flashed onto the boards on the TV production line.

<ToDo>

Provisioning Support

Operator needs to add provisioning support in device so that Device provisioning can be done once deployed at customer premise. The steps for this
varies based on platform as well as Operator type.

Provisioning support refers to the scenario such as when you launch Sample app on your mobile it takes to login page and so you have to login there,
account there i.e. actually the app has to authenticate your login.

Disaster Recovery

Disaster recovery is an inevitable part of the CPE life cycle. Operator, based on their disaster recovery strategy, could add support for this in the
device. While there are some generic guidelines followed across industry, there is no single step that works for all. Operators could easily add their
business logic to RDK as part of Operator firmware engineering as described in .Operator Platform Firmware

As an operator they have to handle crashes/disaster happens and support any factory reset like OTA upgrade.

Test & Certification of devices

Once the device engineering is completed from Operator side, the device can be test and verified easily by the Certification support provided by
RDKM. Details of coverage as well as major cases are explained (only for RDK licensee) .here

https://code.rdkcentral.com/r/plugins/gitiles/rdk/components/generic/appmanager/+/refs/heads/rdk-next/residentapp/residentApp.sh#165
https://code.rdkcentral.com/r/plugins/gitiles/rdk/components/generic/appmanager/+/refs/heads/rdk-next/residentapp/residentApp.sh#165
https://code.rdkcentral.com/r/plugins/gitiles/rdk/components/generic/appmanager/+/refs/heads/rdk-next/residentapp/residentApp.sh#166
https://code.rdkcentral.com/r/plugins/gitiles/rdk/components/generic/appmanager/+/refs/heads/rdk-next/residentapp/residentApp.sh#166
https://code.rdkcentral.com/r/plugins/gitiles/rdk/components/generic/appmanager/+/refs/heads/rdk-next/residentapp/residentApp.sh#230
https://code.rdkcentral.com/r/plugins/gitiles/rdk/components/generic/appmanager/+/refs/heads/rdk-next/residentapp/residentApp.sh#230
https://wiki.rdkcentral.com/display/RDK/RDK+Video+Accelerator+-+Applications
https://wiki.rdkcentral.com/pages/viewpage.action?pageId=144906415
https://wiki.rdkcentral.com/display/TDK/RDK+Video+Accelerator+Certification

Certification suite is available at RDK IP Set-top Product Certification and for TDK test app please refer (only for RDK licensee) TDK-V Documentation.

In short, to get an RDK based device to field, Operators need to get

RDK license
Operator has to get a RDK license and then any premium apps porting operators should have a project agreed with the
corresponding premium app like for youtube it is google to access premium app/any app's plugin or code implementation for app.

In case Operator is planning to include third party apps (like Netflix , Amazon Prime etc. to name a few) there should be a Commercial
License Agreement between operators and premium apps.
Project agreement with OEM's/ SoC

What Operators get from RDK:

Pre-certified stack for third party apps is available in RDK as a For details see .Common Port Architecture. Common Port for Native Apps
RDKServices are available to customize RDKService plugin plugout components for all the stacks mainly Bluetooth, Wifi and front panel,
power manager, device settings etc, pre-set apps and basic architecture of OTA are available.

What Operators need to do:

As an Operator, the certification for the operators device has to be done by them(eg: for premium apps).
Customization of boot loader for operator specific , operator specific UI, Operator specific any customization on the stack such as Power
manager(Power specifications to Set-top box to consume only specified power)
Some Customization of remote and operator specific operations such as other configurations settings and their persistent areas(like premium
app logo size on operator device).
UI integration with RDKServices and UI Specific customizations

Operator specific task on RDK are customization of UI to adopt RDKServices so as part of customization of UI they can refer the
resident app implementation. As part of customisation of UI,OTA upgrade is one of the first main point .As an operator they need to
get the OTA backend server . Xconf is the RDK recommended OTA method.It is not mandatory this can be optional(Like the
firmware update plugin is available there readily they can directly use that infrastructure otherwise they need to configure their
headend with the xconf server.)
Operator specific requirements has to be implemented by operator (eg.frontpanel related or any customisation of UI and any such
requirements)

https://wiki.rdkcentral.com/display/TDK/RDK+Video+Accelerator+Certification
https://wiki.rdkcentral.com/display/TDK/TDK-V+Documentation
https://wiki.rdkcentral.com/display/RDK/Native+Apps#NativeApps-CommonPortforNativeApps

	For Operators

