Google Breakpad

Breakpad is a library and tool suite that allows to distribute an application to users with compiler-provided debugging information removed. Breakpad
library is linked with application which is executed on platform. When application crashes , it produces compact "minidump" files. These minidumps are
send back to server and produce C and C++ stack traces.

Breakpad Capabilities

Removes debug symbols from client code.

(Client) Writes minidump file with thread context.

(Client) Submits minidump to Crash Collector.

(Crash Collector) Reconstructs human readable stack trace.
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When compiled, the stack produces library (libbreakpad_client.a) which should be linked with the test application. When application crashes, it creates
minidump files. There are breakpad utilities like dump_syms and minidump_stackwalker which are used to analyze the minidump.

Setting up Breakpad

Cross-Compile Breakpad library for target board (eg:RPI)

® git clone https://chromium.googlesource.com/breakpad/breakpad


https://chromium.googlesource.com/breakpad/breakpad

® /configure --host=arm-rdk-linux-gnueabi --prefix=/usr
® make

After successful compilation, “libbreakpad_client.a” will be created in “src/client/linux/” directory.

Compile Breakpad for PC to get utilities to analyze minidump

® git clone https://chromium.googlesource.com/breakpad/breakpad
® /configure
®* make

After successful compilation, executables dump_syms and minidump_stackwalk will be created in “src/tools/linux/” directory.

Steps to link google breakpad and create minidump

1. Create a sample app

vim breakpad_exercise.c
2. Include header file for exception handler

#include "client/linux/handler/exception_handler.h"
3. Add breakpad handler in your application. This is the callback function which will be executed when a crash occurs:

4. In main() function, add the handler and register it. Instantiate exception handler for breakpad with the path where minidumps will be created.
Here, current directory (“./ ") where sample app is present & executed is given as path.

5. Create a crash in a function and call this function in main()

6. Link Breakpad library and include path in Makefile

7. Run the application (which crashes and minidump gets generated)

root@raspberrypi-rdk-hybrid:~# 1s
breakpad_exercise

root@raspberrypi-rdk-hybrid:~# _./breakpad_exercise
Crash occurred, Callback function called.
Segmentation fault (core dumped)
root@raspberrypi-rdk-hybrid:~#



https://chromium.googlesource.com/breakpad/breakpad

A minidump file will be generated in the same directory:

root@raspberrypi-rdk-hybrid:~# 1s
40e9abf8-19cc-4b55-cd2bb29f-dbd37900.dmp breakpad_exercise
root@raspberrypi-rdk-hybrid:~# ||

Analyze minidump

dump_syms

Breakpad tool “dump_syms” run on binaries to produce the text-format symbols. The minidump should be copied to server pc where dump_syms is
present.

breakpad/src/tools/linux/dump_syms/dump_syms breakpad_exercise > breakpad_exercise.sym
Run below command on symbol file to get the first line:

head -n1 breakpad_exercise.sym
Output (for example):

MODULE Linux arm 73DC1FFAD46DOECDC4988DBBD008BBC70 breakpad_exercise

In the ideal scenario, this symbol file will be extracted initially and uploaded to some server. The application/library without symbol will be deployed. Once
crashed, the minidump will be generated which will be analyzed along with this symbol file to generate stack trace.

minidump_stackwalk
This utility will give meaningful trace from minidump and symbol file
Create directory of name of this string (code), as shown below:
mkdir -p symbols/breakpad_exercise/73DC1FFAD46DOECDC4988DBBD008BBC70
Copy “breakpad_exercise.sym” file to the above path.
cp breakpad_exercise.sym symbols/breakpad_exercise/73DC1FFAD46DOECDC4988DBBD008BBC70
Run minidump_stackwalk tool on minidump file as below to produce a symbolized stack trace

breakpad/src/processor/minidump_stackwalk 40e9abf8-19cc-4b55-cd2bb29f-dbd37900.dmp symbols/ > tracefile



Operating system:

CPU: arm

ARMv1l ARM part(©x4108de38) features:
vfpv3,tls,vfpvd,idiva,idivt, 4 CPUs

GPU: UNKNOWN

Crash reason:
Crash address:
Process uptime:

oxe

Thread @ (crashed)

Linux
©.0.0 Linux 4.1.21 #1 SMP Wed May 17 ©6:33:42 UTC 2017 armv7l

SIGSEGV

not available

half,thumb,fastmult,vfpv2,edsp,neon,

@ breakpad_exercisel!err_func [breakpad_exercise.c : 13 + ©x8]
ré = Bx7e%9abbfto rl = 8x000eeeel r2 = x84l r3
r4 = 8x0@l1laS5cf1e r5 = 8x7e%9a@bs8e r6 = Bx0@0Pe987c r7
ré = 9x00000800 r9 = 9x000eeoeo rle = 0x76f5=000 rl2
fp = @x7e9%9a@béc sp = Ox7e%9a0béo 1lr = Ox@eeevafc pc

Found by: given as instruction pointer in context

1 breakpad_exerciselmain [breakpad_exercise.c : 23 + ©x2]
rd = 8x81a5cf10 r5 = Bx7e%9a6b80 ré = Ox0808987c r7
ré = xP0000000 rg9 = 9xP0000000 rle = 0x76f5e000 fp
sp = Ox7e9a0b70© pc = OxP00e%afc

Found by: call frame info

2 1libc-2.23.s0 + Oxl16eb6
rd = 2x0801924c rS5 = 9x00000000 ré = Ox8809987c r7
ré = 9x00000008 r9 = Bx00000808080 rl@ = @x76f5e0080 fp
sp = Bx7e9aBcO8 pc = Bx76cS5ceb8

Found by: call frame info

Ox00000000
Oox000e0000
Ox76e9463cC
2x088e9al18

2xP0000000
Px7e9abcog

2x00000000
Ox7e%9alds54
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