
Google Breakpad
Breakpad is a library and tool suite that allows to distribute an application to users with compiler-provided debugging information removed. Breakpad
library is linked with application which is executed on platform. When application crashes , it produces compact "minidump" files. These minidumps are
send back to server and produce C and C++ stack traces.

Breakpad Capabilities

Removes debug symbols from client code.
(Client) Writes minidump file with thread context.
(Client) Submits minidump to Crash Collector.
(Crash Collector) Reconstructs human readable stack trace.

When compiled, the stack produces library (libbreakpad_client.a) which should be linked with the test application. When application crashes, it creates
minidump files. There are breakpad utilities like dump_syms and minidump_stackwalker which are used to analyze the minidump.

Setting up Breakpad

Cross-Compile Breakpad library for target board (eg:RPI)

git clone https://chromium.googlesource.com/breakpad/breakpad

https://chromium.googlesource.com/breakpad/breakpad

1.

2.

3.

4.

./configure --host=arm-rdk-linux-gnueabi --prefix=/usr
make

After successful compilation, “libbreakpad_client.a” will be created in “src/client/linux/” directory.

Compile Breakpad for PC to get utilities to analyze minidump

git clone https://chromium.googlesource.com/breakpad/breakpad
./configure
make

After successful compilation, executables dump_syms and minidump_stackwalk will be created in “src/tools/linux/” directory.

Steps to link google breakpad and create minidump

Create a sample app
vim breakpad_exercise.c
Include header file for exception handler
#include "client/linux/handler/exception_handler.h"
Add breakpad handler in your application. This is the callback function which will be executed when a crash occurs:

In main() function, add the handler and register it. Instantiate exception handler for breakpad with the path where minidumps will be created.
Here, current directory (“./ ”) where sample app is present & executed is given as path.

5. Create a crash in a function and call this function in main()

6. Link Breakpad library and include path in Makefile

7. Run the application (which crashes and minidump gets generated)

https://chromium.googlesource.com/breakpad/breakpad

A minidump file will be generated in the same directory:

Analyze minidump

dump_syms

Breakpad tool “dump_syms” run on binaries to produce the text-format symbols. The minidump should be copied to server pc where dump_syms is
present.

breakpad/src/tools/linux/dump_syms/dump_syms breakpad_exercise > breakpad_exercise.sym

Run below command on symbol file to get the first line:

head -n1 breakpad_exercise.sym

Output (for example):

MODULE Linux arm 73DC1FFAD46D0ECDC4988DBBD008BBC70 breakpad_exercise

In the ideal scenario, this symbol file will be extracted initially and uploaded to some server. The application/library without symbol will be deployed. Once
crashed, the minidump will be generated which will be analyzed along with this symbol file to generate stack trace.

minidump_stackwalk

This utility will give meaningful trace from minidump and symbol file

Create directory of name of this string (code), as shown below:

mkdir -p symbols/breakpad_exercise/73DC1FFAD46D0ECDC4988DBBD008BBC70

Copy “breakpad_exercise.sym” file to the above path.

cp breakpad_exercise.sym symbols/breakpad_exercise/73DC1FFAD46D0ECDC4988DBBD008BBC70

Run minidump_stackwalk tool on minidump file as below to produce a symbolized stack trace

breakpad/src/processor/minidump_stackwalk 40e9abf8-19cc-4b55-cd2bb29f-dbd37900.dmp symbols/ > tracefile

	Google Breakpad

