Google Breakpad

Breakpad is a library and tool suite that allows to distribute an application to users with compiler-provided debugging information removed. Breakpad
library is linked with application which is executed on platform. When application crashes , it produces compact "minidump" files. These minidumps are
send back to server and produce C and C++ stack traces.

Breakpad Capabilities

Removes debug symbols from client code.

(Client) Writes minidump file with thread context.

(Client) Submits minidump to Crash Collector.

(Crash Collector) Reconstructs human readable stack trace.

'S ™
Build System
Breakpad symbol
dumper
strip debug
info
_ v,
distribute program to users copy symbaol file
'S ~N [™
;. Breakpad minidump
processor
Crash! Breakpad client
writes minidump...
..and submits it to
crash collector
it
Human - readable
] User's System)1 Crash Collector oAk Tt |

When compiled, the stack produces library (libbreakpad_client.a) which should be linked with the test application. When application crashes, it creates
minidump files. There are breakpad utilities like dump_syms and minidump_stackwalker which are used to analyze the minidump.

Setting up Breakpad

Cross-Compile Breakpad library for target board (eg:RPI)

® git clone https://chromium.googlesource.com/breakpad/breakpad

https://chromium.googlesource.com/breakpad/breakpad

® /configure --host=arm-rdk-linux-gnueabi --prefix=/usr
® make

After successful compilation, “libbreakpad_client.a” will be created in “src/client/linux/” directory.

Compile Breakpad for PC to get utilities to analyze minidump

® git clone https://chromium.googlesource.com/breakpad/breakpad
® /configure
®* make

After successful compilation, executables dump_syms and minidump_stackwalk will be created in “src/tools/linux/” directory.

Steps to link google breakpad and create minidump

1. Create a sample app

vim breakpad_exercise.c
2. Include header file for exception handler

#include "client/linux/handler/exception_handler.h"
3. Add breakpad handler in your application. This is the callback function which will be executed when a crash occurs:

4. In main() function, add the handler and register it. Instantiate exception handler for breakpad with the path where minidumps will be created.
Here, current directory (“./ ") where sample app is present & executed is given as path.

5. Create a crash in a function and call this function in main()

6. Link Breakpad library and include path in Makefile

7. Run the application (which crashes and minidump gets generated)

root@raspberrypi-rdk-hybrid:~# 1s
breakpad_exercise

root@raspberrypi-rdk-hybrid:~# _./breakpad_exercise
Crash occurred, Callback function called.
Segmentation fault (core dumped)
root@raspberrypi-rdk-hybrid:~#

https://chromium.googlesource.com/breakpad/breakpad

A minidump file will be generated in the same directory:

root@raspberrypi-rdk-hybrid:~# 1s
40e9abf8-19cc-4b55-cd2bb29f-dbd37900.dmp breakpad_exercise
root@raspberrypi-rdk-hybrid:~# ||

Analyze minidump

dump_syms

Breakpad tool “dump_syms” run on binaries to produce the text-format symbols. The minidump should be copied to server pc where dump_syms is
present.

breakpad/src/tools/linux/dump_syms/dump_syms breakpad_exercise > breakpad_exercise.sym
Run below command on symbol file to get the first line:

head -n1 breakpad_exercise.sym
Output (for example):

MODULE Linux arm 73DC1FFAD46DOECDC4988DBBD008BBC70 breakpad_exercise

In the ideal scenario, this symbol file will be extracted initially and uploaded to some server. The application/library without symbol will be deployed. Once
crashed, the minidump will be generated which will be analyzed along with this symbol file to generate stack trace.

minidump_stackwalk
This utility will give meaningful trace from minidump and symbol file
Create directory of name of this string (code), as shown below:
mkdir -p symbols/breakpad_exercise/73DC1FFAD46DOECDC4988DBBD008BBC70
Copy “breakpad_exercise.sym” file to the above path.
cp breakpad_exercise.sym symbols/breakpad_exercise/73DC1FFAD46DOECDC4988DBBD008BBC70
Run minidump_stackwalk tool on minidump file as below to produce a symbolized stack trace

breakpad/src/processor/minidump_stackwalk 40e9abf8-19cc-4b55-cd2bb29f-dbd37900.dmp symbols/ > tracefile

Operating system:

CPU: arm

ARMv1l ARM part(©x4108de38) features:
vfpv3,tls,vfpvd,idiva,idivt, 4 CPUs

GPU: UNKNOWN

Crash reason:
Crash address:
Process uptime:

oxe

Thread @ (crashed)

Linux
©.0.0 Linux 4.1.21 #1 SMP Wed May 17 ©6:33:42 UTC 2017 armv7l

SIGSEGV

not available

half,thumb,fastmult,vfpv2,edsp,neon,

@ breakpad_exercisel!err_func [breakpad_exercise.c : 13 + ©x8]
ré = Bx7e%9abbfto rl = 8x000eeeel r2 = x84l r3
r4 = 8x0@l1laS5cf1e r5 = 8x7e%9a@bs8e r6 = Bx0@0Pe987c r7
ré = 9x00000800 r9 = 9x000eeoeo rle = 0x76f5=000 rl2
fp = @x7e9%9a@béc sp = Ox7e%9a0béo 1lr = Ox@eeevafc pc

Found by: given as instruction pointer in context

1 breakpad_exerciselmain [breakpad_exercise.c : 23 + ©x2]
rd = 8x81a5cf10 r5 = Bx7e%9a6b80 ré = Ox0808987c r7
ré = xP0000000 rg9 = 9xP0000000 rle = 0x76f5e000 fp
sp = Ox7e9a0b70© pc = OxP00e%afc

Found by: call frame info

2 1libc-2.23.s0 + Oxl16eb6
rd = 2x0801924c rS5 = 9x00000000 ré = Ox8809987c r7
ré = 9x00000008 r9 = Bx00000808080 rl@ = @x76f5e0080 fp
sp = Bx7e9aBcO8 pc = Bx76cS5ceb8

Found by: call frame info

Ox00000000
Oox000e0000
Ox76e9463cC
2x088e9al18

2xP0000000
Px7e9abcog

2x00000000
Ox7e%9alds54

	Google Breakpad

