
systemd.service

Name

systemd.service — Service unit configuration

Synopsis

.serviceservice

Description

A unit configuration file whose name ends in " " encodes information about a process controlled and supervised by systemd..service

This man page lists the configuration options specific to this unit type. See for the common options of all unit configuration files. The (5)systemd.unit
common configuration items are configured in the generic [Unit] and [Install] sections. The service specific configuration options are configured in the
[Service] section.

Additional options are listed in , which define the execution environment the commands are executed in, and in , which (5)systemd.exec (5)systemd.kill
define the way the processes of the service are terminated, and in , which configure resource control settings for the (5)systemd.resource-control
processes of the service.

If SysV init compat is enabled, systemd automatically creates service units that wrap SysV init scripts (the service name is the same as the name of the
script, with a " " suffix added); see ..service (8)systemd-sysv-generator

The command allows creating and units dynamically and transiently from the command line.(1)systemd-run .service .scope

Service Templates

It is possible for services to take a single argument via the " " syntax. Such services are called "instantiated" systemd @ .serviceservice argument
services, while the unit definition without the parameter is called a "template". An example could be a service template argument dhcpcd@.service
which takes a network interface as a parameter to form an instantiated service. Within the service file, this parameter or "instance name" can be accessed
with %-specifiers. See for details.(5)systemd.unit

Automatic Dependencies

Implicit Dependencies

The following dependencies are implicitly added:

Services with set automatically acquire dependencies of type and on .Type=dbus Requires= After= dbus.socket
Socket activated services are automatically ordered after their activating units via an automatic dependency. Services also pull .socket After=
in all units listed in via automatic and dependencies..socket Sockets= Wants= After=

Additional implicit dependencies may be added as result of execution and resource control parameters as documented in and (5)systemd.exec systemd.
.(5)resource-control

Default Dependencies

The following dependencies are added unless is set:DefaultDependencies=no

Service units will have dependencies of type and on , a dependency of type on Requires= After= sysinit.target After= basic.target
as well as dependencies of type and on . These ensure that normal service units pull in basic system Conflicts= Before= shutdown.target
initialization, and are terminated cleanly prior to system shutdown. Only services involved with early boot or late system shutdown should disable
this option.
Instanced service units (i.e. service units with an " " in their name) are assigned by default a per-template slice unit (see), @ (5)systemd.slice
named after the template unit, containing all instances of the specific template. This slice is normally stopped at shutdown, together with all
template instances. If that is not desired, set in the template unit, and either define your own per-template slice unit DefaultDependencies=no
file that also sets , or set (or another suitable slice) in the template unit. Also see DefaultDependencies=no Slice=system.slice systemd.

.(5)resource-control

Command lines

This section describes command line parsing and variable and specifier substitutions for , , , ExecStart= ExecStartPre= ExecStartPost= ExecReloa
, , and options.d= ExecStop= ExecStopPost=

https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/systemd.exec.html
https://www.freedesktop.org/software/systemd/man/systemd.kill.html
https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html
https://www.freedesktop.org/software/systemd/man/systemd-sysv-generator.html
https://www.freedesktop.org/software/systemd/man/systemd-run.html
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/systemd.exec.html
https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html
https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html
https://www.freedesktop.org/software/systemd/man/systemd.slice.html
https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html
https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html

Multiple command lines may be concatenated in a single directive by separating them with semicolons (these semicolons must be passed as separate
words). Lone semicolons may be escaped as " ".\;

Each command line is unquoted using the rules described in "Quoting" section in . The first item becomes the command to execute, and (7)systemd.syntax
the subsequent items the arguments.

This syntax is inspired by shell syntax, but only the meta-characters and expansions described in the following paragraphs are understood, and the
expansion of variables is different. Specifically, redirection using " ", " ", " ", and " ", pipes using " ", running programs in the background using " ", < << > >> | &
and .other elements of shell syntax are not supported

The command to execute may contain spaces, but control characters are not allowed.

The command line accepts " " specifiers as described in .% (5)systemd.unit

Basic environment variable substitution is supported. Use " " as part of a word, or as a word of its own, on the command line, in which case it will ${FOO}
be erased and replaced by the exact value of the environment variable (if any) including all whitespace it contains, always resulting in exactly a single
argument. Use " " as a separate word on the command line, in which case it will be replaced by the value of the environment variable split at $FOO
whitespace, resulting in zero or more arguments. For this type of expansion, quotes are respected when splitting into words, and afterwards removed.

If the command is not a full (absolute) path, it will be resolved to a full path using a fixed search path determined at compilation time. Searched directories
include , , on systems using split and directories, and their counterparts on systems /usr/local/bin/ /usr/bin/ /bin/ /usr/bin/ /bin/ sbin/
using split and . It is thus safe to use just the executable name in case of executables located in any of the "standard" directories, and an bin/ sbin/
absolute path must be used in other cases. Using an absolute path is recommended to avoid ambiguity. Hint: this search path may be queried using syste

.md-path search-binaries-default

Example:

Environment="ONE=one" 'TWO=two two'
ExecStart=echo $ONE $TWO ${TWO}

This will execute with four arguments: " ", " ", " ", and " "./bin/echo one two two two two

Example:

Environment=ONE='one' "TWO='two two' too" THREE=
ExecStart=/bin/echo ${ONE} ${TWO} ${THREE}
ExecStart=/bin/echo $ONE $TWO $THREE

This results in being called twice, the first time with arguments " ", " ", "", and the second time with arguments " ", "/bin/echo 'one' 'two two' too one t
", " ".wo two too

To pass a literal dollar sign, use " ". Variables whose value is not known at expansion time are treated as empty strings. Note that the first argument (i.e. $$
the program to execute) may not be a variable.

Variables to be used in this fashion may be defined through and . In addition, variables listed in the section Environment= EnvironmentFile=
"Environment variables in spawned processes" in , which are considered "static configuration", may be used (this includes e.g. , but (5)systemd.exec $USER
not).$TERM

Note that shell command lines are not directly supported. If shell command lines are to be used, they need to be passed explicitly to a shell implementation
of some kind. Example:

ExecStart=sh -c 'dmesg | tac'

Example:

ExecStart=echo one ; echo "two two"

This will execute two times, each time with one argument: " " and " ", respectively. Because two commands are specified, echo one two two Type=oneshot
must be used.

Example:

ExecStart=echo / >/dev/null & \; \
ls

This will execute with five arguments: " ", " ", " ", " ", and " ".echo / >/dev/null & ; ls

Examples

Example 2. Simple service

The following unit file creates a service that will execute . Since no is specified, the default will be /usr/sbin/foo-daemon Type= Type=simple
assumed. systemd will assume the unit to be started immediately after the program has begun executing.

https://www.freedesktop.org/software/systemd/man/systemd.syntax.html
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/systemd.exec.html

[Unit]
Description=Foo

[Service]
ExecStart=/usr/sbin/foo-daemon

[Install]
WantedBy=multi-user.target

Note that systemd assumes here that the process started by systemd will continue running until the service terminates. If the program daemonizes itself (i.
e. forks), please use instead.Type=forking

Since no was specified, systemd will send SIGTERM to all processes started from this service, and after a timeout also SIGKILL. This ExecStop=
behavior can be modified, see for details.(5)systemd.kill

Note that this unit type does not include any type of notification when a service has completed initialization. For this, you should use other unit types, such
as if the service understands systemd's notification protocol, if the service can background itself or if the unit Type=notify Type=forking Type=dbus
acquires a DBus name once initialization is complete. See below.

Example 3. Oneshot service

Sometimes, units should just execute an action without keeping active processes, such as a filesystem check or a cleanup action on boot. For this, Type=o
 exists. Units of this type will wait until the process specified terminates and then fall back to being inactive. The following unit will perform a neshot

cleanup action:

[Unit]
Description=Cleanup old Foo data

[Service]
Type=oneshot
ExecStart=/usr/sbin/foo-cleanup

[Install]
WantedBy=multi-user.target

Note that systemd will consider the unit to be in the state "starting" until the program has terminated, so ordered dependencies will wait for the program to
finish before starting themselves. The unit will revert to the "inactive" state after the execution is done, never reaching the "active" state. That means
another request to start the unit will perform the action again.

Type=oneshot are the only service units that may have more than one specified. For units with multiple commands (), all ExecStart= Type=oneshot
commands will be run again.

For , and are allowed.Type=oneshot Restart=always Restart=on-success not

Example 4. Stoppable oneshot service

Similarly to the oneshot services, there are sometimes units that need to execute a program to set up something and then execute another to shut it down,
but no process remains active while they are considered "started". Network configuration can sometimes fall into this category. Another use case is if a
oneshot service shall not be executed each time when they are pulled in as a dependency, but only the first time.

For this, systemd knows the setting , which causes systemd to consider the unit to be active if the start action exited successfully. RemainAfterExit=yes
This directive can be used with all types, but is most useful with and . With , systemd waits until the start Type=oneshot Type=simple Type=oneshot
action has completed before it considers the unit to be active, so dependencies start only after the start action has succeeded. With , Type=simple
dependencies will start immediately after the start action has been dispatched. The following unit provides an example for a simple static firewall.

[Unit]
Description=Simple firewall

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/local/sbin/simple-firewall-start
ExecStop=/usr/local/sbin/simple-firewall-stop

[Install]
WantedBy=multi-user.target

Since the unit is considered to be running after the start action has exited, invoking on that unit again will cause no action to be taken.systemctl start

Example 5. Traditional forking services

Many traditional daemons/services background (i.e. fork, daemonize) themselves when starting. Set in the service's unit file to support Type=forking
this mode of operation. systemd will consider the service to be in the process of initialization while the original program is still running. Once it exits
successfully and at least a process remains (and), the service is considered started.RemainAfterExit=no

https://www.freedesktop.org/software/systemd/man/systemd.kill.html

Often, a traditional daemon only consists of one process. Therefore, if only one process is left after the original process terminates, systemd will consider
that process the main process of the service. In that case, the variable will be available in , , etc.$MAINPID ExecReload= ExecStop=

In case more than one process remains, systemd will be unable to determine the main process, so it will not assume there is one. In that case, $MAINPID
will not expand to anything. However, if the process decides to write a traditional PID file, systemd will be able to read the main PID from there. Please set

 accordingly. Note that the daemon should write that file before finishing with its initialization. Otherwise, systemd might try to read the file before PIDFile=
it exists.

The following example shows a simple daemon that forks and just starts one process in the background:

[Unit]
Description=Some simple daemon

[Service]
Type=forking
ExecStart=/usr/sbin/my-simple-daemon -d

[Install]
WantedBy=multi-user.target

Please see for details on how you can influence the way systemd terminates the service.(5)systemd.kill

Example 6. DBus services

For services that acquire a name on the DBus system bus, use and set accordingly. The service should not fork (daemonize). Type=dbus BusName=
systemd will consider the service to be initialized once the name has been acquired on the system bus. The following example shows a typical DBus
service:

[Unit]
Description=Simple DBus service

[Service]
Type=dbus
BusName=org.example.simple-dbus-service
ExecStart=/usr/sbin/simple-dbus-service

[Install]
WantedBy=multi-user.target

For services, do not include a [Install] section in the systemd service file, but use the option in the corresponding bus-activatable SystemdService=
DBus service file, for example ():/usr/share/dbus-1/system-services/org.example.simple-dbus-service.service

[D-BUS Service]
Name=org.example.simple-dbus-service
Exec=/usr/sbin/simple-dbus-service
User=root
SystemdService=simple-dbus-service.service

Please see for details on how you can influence the way systemd terminates the service.(5)systemd.kill

Example 7. Services that notify systemd about their initialization

Type=simple services are really easy to write, but have the major disadvantage of systemd not being able to tell when initialization of the given service is
complete. For this reason, systemd supports a simple notification protocol that allows daemons to make systemd aware that they are done initializing. Use

 for this. A typical service file for such a daemon would look like this:Type=notify

[Unit]
Description=Simple notifying service

[Service]
Type=notify
ExecStart=/usr/sbin/simple-notifying-service

[Install]
WantedBy=multi-user.target

Note that the daemon has to support systemd's notification protocol, else systemd will think the service has not started yet and kill it after a timeout. For an
example of how to update daemons to support this protocol transparently, take a look at . systemd will consider the unit to be in the 'starting' (3)sd_notify
state until a readiness notification has arrived.

Please see for details on how you can influence the way systemd terminates the service.(5)systemd.kill

https://www.freedesktop.org/software/systemd/man/systemd.kill.html
https://www.freedesktop.org/software/systemd/man/systemd.kill.html
https://www.freedesktop.org/software/systemd/man/sd_notify.html
https://www.freedesktop.org/software/systemd/man/systemd.kill.html

	systemd.service

