
Finding kernel memory leaks using kmemleak

Introduction

Kmemleak is a Linux kernel feature designed to detect and report memory leaks in the kernel code. Memory leaks occur when a program
allocates memory dynamically but fails to release it when it is no longer needed. This can result in a gradual loss of memory over time, eventually
leading to system instability or even crashes.
Kmemleak works by scanning the kernel memory periodically to detect any memory that has been allocated but not freed. When it detects a
potential memory leak, it reports it to the system log along with a stack trace that shows where the memory was allocated. This information can
help developers to identify and fix the source of the memory leak.
Kmemleak is a useful tool for kernel developers and system administrators who want to ensure that their systems are stable and free of memory
leaks. It can be enabled in the kernel configuration, and once enabled, it will run automatically in the background, periodically scanning the kernel
memory for leaks.

Required kernel configs need to enable

CONFIG_HAVE_DEBUG_KMEMLEAK=y
CONFIG_DEBUG_KMEMLEAK=y
CONFIG_DEBUG_KMEMLEAK_TEST=m

Integrating Kmemleak tool for RPI-3

1) Create file under with below kernel configs.kmemleak.cfg meta-cmf-raspberrypi/recipes-kernel/linux/files
: Need to add this change in corresponding platform OEM layer.Note

CONFIG_HAVE_DEBUG_KMEMLEAK=y
CONFIG_DEBUG_KMEMLEAK=y
CONFIG_DEBUG_KMEMLEAK_TEST=m

2) Add file in kmemleak.cfg meta-cmf-raspberrypi/recipes-kernel/linux/linux-raspberrypi_5.10.52.bb
: Need to add this change in corresponding platform OEM layer.Note

Please find below diff file.
Ex:

diff --git a/recipes-kernel/linux/linux-raspberrypi_5.10.52.bb b/recipes-kernel/linux/linux-raspberrypi_5.10.52.
bb
index 2c7f19a..224a64a 100644
--- a/recipes-kernel/linux/linux-raspberrypi_5.10.52.bb
+++ b/recipes-kernel/linux/linux-raspberrypi_5.10.52.bb
@@ -11,6 +11,7 @@ FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

 SRC_URI += " file://powersave.cfg \
 file://android-drivers.cfg \
+ file://kmemleak.cfg \
 "

3) Once build done with above changes, verify the kernel configs are enabled in final kernel boot config file.
Path of kernel boot config file: build-raspberrypi-rdk-mc/tmp/work/raspberrypi_rdk_mc-rdk-linux-gnueabi/linux-raspberrypi/1_5.10.52
+gitAUTOINC+dbe03fa900_2697f74031-r0/image/boot/config-5.10.52-v7

Need to verify in corresponding platform specific final kernel boot config fileNote:
Ex:

csures569@dvm-yocto3-docker-csures569:~/rpi-stack/build-raspberrypi-rdk-mc/tmp/work/raspberrypi_rdk_mc-rdk-
linux-gnueabi/linux-raspberrypi/1_5.10.52+gitAUTOINC+dbe03fa900_2697f74031-r0/image/boot$ cat config-5.10.52-
v7 | grep "KMEMLEAK"
CONFIG_HAVE_DEBUG_KMEMLEAK=y
CONFIG_DEBUG_KMEMLEAK=y
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE=16000
CONFIG_DEBUG_KMEMLEAK_TEST=m
CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF is not set
CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN=y

4) On flashing the image with above changes , verify the kmemleak enabled in the device, it will create a under and kmemleak folder /sys/modules/ kme
 under mleak file /sys/kernel/debug/

Ex:

root@raspberrypi-rdk-mc:/sys/module# ls -l | grep "kmemleak"
drwxr-xr-x 3 root root 0 Mar 5 09:49 kmemleak

root@raspberrypi-rdk-mc:~# ls /sys/kernel/debug/kmemleak
/sys/kernel/debug/kmemleak

5) Once enabled kmemleak we will get kernel memory leaks in if leaks are reported./sys/kernel/debug/kmemleak file

Testing kmemleak tool with kmemleak-test module in RPI-3

kmemleak-test is a test module available as part of kmemleak. By default, this module is not compiled in RPI3 and so there is no kmemleak-test.ko
module. If needed, we need to enable to build as a module by following the above mentioned kernel configurations.

 : build-raspberrypi-rdk-mc/tmp/work-shared/raspberrypi-rdk-mc/kernel-source/samples/kmemleak/kmemleak-test.Path of kmemleak-test module source
c
kmemleak-test.koblocked URL

 Need to generate module file from corresponding platform specific kernel source code.Note: kmemleak-test.ko

: Copy kmemleak-test.ko module to this path in box .Step 1 /lib/modules/5.10.52-v7/
: load the module to kernel space with insmod command.Step 2

Ex:

root@raspberrypi-rdk-mc:~# insmod /lib/modules/5.10.52-v7/kmemleak-test.ko
root@raspberrypi-rdk-mc:~#

Step 3 : verify whether module is loaded or not
Ex: lsmod

root@raspberrypi-rdk-mc:~# lsmod

Module Size Used by

kmemleak_test 16384 0 // kmemleak test module loaded.
ip6t_REJECT 16384 2
nf_reject_ipv6 16384 1 ip6t_REJECT
ip6table_nat 16384 1
br_netfilter 32768 0
xt_state 16384 0

Step 4: Perform a scan
Ex: echo scan > /sys/kernel/debug/kmemleak

root@raspberrypi-rdk-mc:~# echo scan > /sys/kernel/debug/kmemleak
root@raspberrypi-rdk-mc:~#

Step 5: Collect memory leak data

Ex: cat /sys/kernel/debug/kmemleak

https://jira.rdkcentral.com/jira/secure/attachment/63167/63167_kmemleak-test.ko
https://jira.rdkcentral.com/jira/images/icons/link_attachment_7.gif

1.

2.

3.

4.

Note : In kmemleak-test module () the kernel memory leaks functionality present in the function and kmemleak-test.c kmemleak_test_init kmemleak_t
 function, so memory leaks will be detect when module loaded into kernel space and removed from kernel space. est_exit

Testing memory leaks from your kernel code

Suppose that you have a kernel module code which you want to test for kernel memory leaks. Make sure that kmemleak is enabled as mentioned above.
Then, run the functionality of your kernel module by invoking it. Any memory leaks present in the kernel driver code will be reported in /sys/kernel/debug
/kmemleak.

Memory leaks from module_init and module_exit functions get reported when the driver is inserted or removed. Inorder to test the memory leaks present
in other functions , we need to manually invoke those functions.

Limitations and Drawbacks

While kmemleak can be a useful tool for detecting and reporting memory leaks in the Linux kernel, there are several limitations and drawbacks to consider:
The main drawback is the reduced performance of memory allocation and freeing. To avoid other penalties, the memory scanning is only performed when
the /sys/kernel/debug/kmemleak file is read. Anyway, this tool is intended for debugging purposes where the performance might not be the most important
requirement.

False positives: Kmemleak may report potential memory leaks that are actually false positives, leading to unnecessary investigation and
debugging.
Overhead: Kmemleak can increase the overhead of the kernel, particularly during the initial scanning phase. This can impact system performance
and resource utilization.
Incomplete coverage: Kmemleak may not be able to detect all memory leaks, particularly those that occur in modules or code that are not
regularly scanned.
Debugging complexity: Debugging memory leaks can be a complex and time-consuming process, particularly in large and complex kernel
codebases.

Ref: https://static.lwn.net/kerneldoc/dev-tools/kmemleak.html

https://static.lwn.net/kerneldoc/dev-tools/kmemleak.html

	Finding kernel memory leaks using kmemleak

