How to Build

A tutorial to set up your environment and Download Source Code

® 1. Build Setup Instructions

o 1.1. Setting up the Host Environment
® 1.1.1. Install the following packages for setting up your host VM
® 1.1.2. Configure bash as default command interpreter for shell scripts
= 1.1.3. Configure Git
= 1.1.4. Configure repo
® 1.1.5. Credential configuration

0 1.2. Downloading Source Code & Building
= 1.2.1. Downloading Source Code
= 1.2.2. Building

1. Build Setup Instructions

1.1. Setting up the Host Environment
Pre-Requisites
Requirement Yocto 2.2 (Morty) Yocto 3.1 LTS (Dunfell)

Linux 32/64 bit Ubuntu 16.04 LTS 64 bit Ubuntu 18.04 LTS

Precise supported distributions and versions are here ' Precise supported distributions and versions are here

Free HDD Space Minimum 100GB Free Memory Minimum 100GB Free memory space
Oracle Virtual Box 5.0.40 or higher -
Wireless Adapter Brand Name: Tenda ralink & Model Number:W311MI | -

TP-Link Archer T4U AC 1200
USB to Ethernet Switch = To connect with Ethernet Switch & Multiple Clients

Host Tools version

® Git1.8.3.1 or greater ® Git 1.8.3.1 or greater
® tar 1.24 or greater ® tar 1.28 or greater
® Python 2.7.3 ® Python 3.5.0 or greater

1.1.1. Install the following packages for setting up your host VM

The instructions provided below are meant to be executed via the command line on an Ubuntu machine

for yocto 2.2 (morty)

essential packages installation
super user node is required

maj or essential packages

sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-nultilib g++-nultilib build-essential
chrpath socat bison curl

supportive packages

sudo apt-get install libfile-slurp-perl |ibncurses-dev autoconf flex doxygen |ibtool automake |ibpcre3-dev

zl i blg-dev |ibbz2-dev subversion mnicomputty |ibssl-dev rpm python-pexpect python-svn python-argparse vim
tofrodos mel d dos2uni x cneke uuid-dev ruby transfig libglib2.0-dev xutils-dev |ynx-cur gperf autopoint python-
dul wi ch python-dev openjdk-7-jre

Yocto 2.2 (Morty)

Note : Please note openjdk-7-jre package is not available for Ubuntu-16.04 anymore. Presumably openjdk-8-jre should be used instead.

https://www.yoctoproject.org/docs/2.2/ref-manual/ref-manual.html#detailed-supported-distros
https://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html#detailed-supported-distros

for yocto 3.1 (dunfell)

essential packages installation
super user node is required

maj or essential packages

sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-nultilib g++-nultilib build-essential
chrpath socat bison curl cpio python3 python3-pip python3-pexpect xz-utils debianutils iputils-ping python3-git
python3-jinja2 libegl 1-mesa |ibsdl 1. 2-dev pylint3 xterm

1.1.2. Configure bash as default command interpreter for shell scripts

sudo dpkg-reconfigure dash

Select “No”
To choose bash, when the prompt asks if you want to use dash as the default system shell - select “No”

1.1.3. Configure Git

Upgrade your Git version to 1.8.x or higher

On Ubuntu 16.04 LTS, if you are unable to upgrade your git version using apt-get, then follow the below steps in order to upgrade

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:git-core/ppa

sudo apt-get update

sudo apt-get install git

Once git is installed, configure your name and email using the below commands

revi ew your existing configuration
git config --list --showorigin

configure user name and email address
git config --global user.nane "John Doe"
git config --global user.enail johndoe@xanple.com

configure git cookies. Needed for Gerrit to only contact the LDAP backend once.
git config --global http.cookieFile /tnp/gitcookie.txt
git config --global http.saveCookies true

1.1.4. Configure repo

In order to use Yocto build system, first you need to make sure that repo is properly installed on the machine:

create a bin directory
nkdir ~/bin
export PATH=~/ bi n: $PATH

Downl oad the repo tool and ensure that it is executable
curl http://comondat ast or age. googl eapi s. coni gi t - r epo- downl oads/ repo > ~/ bi n/repo
chmod a+x ~/ bin/repo

Trivia : Repo is a repository management tool that is built on top of Git. Its main purpose is to help manage projects that consist of many Git repositories, it
can also be used to manage uploads to the CMF Gerrit instance and automate aspects of the development workflow.

Repo does not replace Git, it simply aids management of projects that contain multiple Git repositories into a single local working directory. Git will still be
used for local operation such as commits etc.

Repo manages this for you by means of an XML based Manifest file. The Manifest file defines which repositories the project uses and links to appropriate
revisions of each git repository, i.e where the upstream repositories reside and where they should be cloned locally. It is the manifest.xml (or default.xml)
that determines which Git repositories and revisions repo will manage. This manifest.xml file is hosted in a Git repository along with all the other git
repositories.

1.1.5. Credential configuration
Note: it is also recommended to put credentials in .netrc when interacting with the repo.

A sample .netrc file is illustrated below

machine code.rdkcentral.com
login <YOUR_USERNAME>

password <YOUR_PASSWORD>

1.2. Downloading Source Code & Building

1.2.1. Downloading Source Code

Following commands fetch the source code using repo tool

$ mkdir <Directory-Name> && cd <Directory-Name>

Please use the following repo init command

$ repo init -u https://user@code.rdkcentral.com/r/manifests -m manifest.xml -b <branch_name>
Examples :

repo init -u https://code.rdkcentral.com/r/manifests -m rdkb.xml -b rdkb-20180527

repo init -u https://code.rdkcentral.com/r/manifests -m rdkb.xml -b master

repo init -u https://code.rdkcentral.com/r/manifests -m rdkb.xml -b morty

$ repo sync --no-clone-bundle

® Cloning the code before login once to code.rdkcentral.com, user would get the Authentication error, even though the account is in good
standing and has all the required access.
® Please login to code.rdkcentral.com before attempting to clone.

1.2.2. Building

$ source <setup-environment>

The above step configures and sets up your directory to start an appropriate build.
There are different kinds of builds listed. Please read the options and select the number of the build you need.
1) meta-rdk-bsp-emulator/conf/machine/qemuarmbroadband.conf

2) meta-rdk-bsp-emulator/conf/machine/gemux86broadband.conf

3) meta-rdk-bsp-emulator/conf/machine/qemux86hyb.conf

4) meta-rdk-bsp-emulator/conf/machine/qemux86mc.conf

5) openembedded-core/meta/conf/machine/qemuarm.conf

6) openembedded-core/meta/conf/machine/qemux86-64.conf

7) openembedded-core/meta/conf/machine/qemux86.conf

Next, you would need to initiate the build using the following command:

$ bitbake <image-name>

On Successful build, the ROOTFS (in vmdk format) would be available at the following reference location based on the build type :

-$ {HOME}/emulator/build-gemux86broadband/tmp/deploy/images/qemux86broadband/rdk-generic-broadband-image-gemux86broadband-<timestamp>.
vmdk

Example :

http://code.rdkcentral.com/
https://code.rdkcentral.com/r/manifests
https://code.rdkcentral.com/r/manifests
https://code.rdkcentral.com/r/manifests
https://code.rdkcentral.com/r/
https://code.rdkcentral.com/r/

.../build-gemux86broadband/tmp/deploy/images/gemux86broadband/rdk-generic-broadband-image-gemux86broadband-20160217080610.vmdk

	How to Build

