
Doxygen Guideline

Introduction
Documentation Style

System
File
Classes
Structs
Methods
Variables
Enumerated Types
Miscellaneous

Setting up Doxygen Environment on Windows

Introduction

The purpose of this page is to provide a uniform style of Doxygen commenting for the RDK system. It will serve as a reference for current and future
developers, while documenting the RDK system as it evolves. Ultimately, this will establish a consistent manner of documentation to strengthen the
simplicity, readability, scalability, writability, reliability, and maintainability of the system.

Documentation Style

Doxygen documentation can be generated in many formats(HTML, LaTeX, RTF, PDF, DOC) . HTML generation has support for more plugins and is easier
to refactor as the system changes. Doxygen style should follow a consistent format to aid development across different IDEs. Additionally, it reduces
issues when generating documentation.

Standard Doxygen Tag Format

/**
 * @tagname
 */

This is an example of a Java doc style Doxygen tag, since it uses the “@” symbol. Tags using the “\tagname” style are considered Qt style Doxygen tags.

There should be a header file containing only Doxygen tags or a separate Doxygen file that acts as a guide for the components, classes, methods, and
variables (e.g. DoxygenMainpage.h). This can be done using the tag at the top of the file.@mainpage

System

There should be a header file containing only Doxygen tags or a separate Doxygen file that acts as a guide for the components, classes, methods, and
variables (e.g. DoxygenMainpage.h). This can be done using the tag at the top of the file.@mainpage

Main Page Tag Example

/**
 * @mainpage Title of Document
 *
 */

Example of HAL system (Note: source code was also modified to support correct generation of documentation)Doxygen Guideline

File

A file should contain the tag at the top of the file. This supports generation of a file list tab on the main page. It also helps when files contain multiple @file
classes.

File Tagging Example

/**
 * @file FileName.h
 *
 * @brief Brief file description.
 *
 * Verbose file description.
 */

Classes

Classes can be tagged in a number of different ways, but in general they are tagged using the and tags before the class declaration. @brief @class
Having the , , and supports tractability as the system is versioned throughout the software lifecycle. When updating classes, @author @date @version
update comments like this:

Class Tagging Example

#include <iostream>
using namespace std;

/**
 * @brief Brief class description
 *
 * Verbose description of class.
 *
 * @class Class Name
 */

class ClassName {
 public:
 ClassName();
 ~ClassName();

 int var1; /**< Comment about public member variable*/

 /**
 *@brief Brief method description
 *
 * Verbose description of method
 *
 *@param Parameter in the method’s definition
 *
 *@return Return value of method
 */
 int Function1(int x);

 protected:
 int var2; /**< Comment about protected member variable*/

 /**
 *@brief Brief method description
 *
 * Verbose description of method
 *
 *@param Parameter in the method’s definition
 *
 *@return Return value of method
 */
 int Function2(int x);

 private:
 int var3; /**< Comment about private member variable*/

 /**
 *@brief Brief method description
 *
 * Verbose description of method
 *
 *@param Parameter in the method’s definition
 *
 *@return Return value of method
 */
 int Function3(int x);

};

Structs

A struct can be tagged in the same way a class, but it is best to use the tag. When updating structs, update comments like this:@struct

Struct Tagging Example

/**
 *@brief Brief struct description
 *
 *@struct Struct Name
 */

Methods

Methods can be tagged in a number of ways, but in general the , , , and tags are used before a method’s declaration or @brief @details @param @return
implementation. When updating methods, update comments like this:

Method Tagging Example

/**
 *@brief Brief method description
 *
 * Verbose description of method
 *
 *@param Parameter in the method’s definition
 *
 *@return Return value of method
 *@retval Verbose explanation of return values
 */
int addNumbers(int x)
{
 int sum = 0;
 sum += x;
 return sum;
}

Variables

When updating variables, update comments like this:

Variable Short Hand Tag Example

int number; /**< Comment about number*/

Enumerated Types

Enumerated types are tagged using the . When updating enum types, update comments like this:@enum

Method Tagging Example

/**
 *@brief Brief enum description
 *
 *@enum enum Name
 */

Miscellaneous

There are many tags you can use with HTML markup to create unique Doxygen documentation for a given file, class, method, or variable. The following
are common tags that should be used when appropriate.

Informative Tags

/**
 *@note A brief remark about the implementation to help clarify.
 *
 *@attention An important remark that may cause code to break.
 *
 *@warning An import remark that may depend on random conditions etc.
 *
 *@see A reference to a class or a link to documentation (e.g. http://document.1a.com)
 */

Maintenance Tags

/**
 *@bug A remark about a known bug in the code.
 *
 *@todo A remark of what needs to be done to fix issues or remaining work.
 *
 */

Format Font Tags

/**
 *@a Formats following word in special font (used for hyperlinks)
 *
 *@b Formats following word in bold
 *
 *@em Formats following word in italic
 *
 *@c Formats following word in monospaced typewriter font
 *
 */

Structed List Tags

/**
 * - bulleted list item1
 * - sub bulleted item1
 *
 * - bulleted list item2
 *
 */

Numbered List

/**
 * -# numbered list item1
 * -# numbered list item2
 *
 */

Displaying Code

/**
 *@code
 i++;
 *@endcode
 */

Setting up Doxygen Environment on Windows

Before generating Doxygen documentation, make sure to have the following:

Doxygen: (Contains Doxywizard)http://www.stack.nl/~dimitri/doxygen/download.html

Graphviz: (Click the Download link on the left side of the page)http://www.graphviz.org/

Navigate to the DoxyWizard (comes with Doxygen setup) application and configure it:

http://www.stack.nl/~dimitri/doxygen/download.html
http://www.graphviz.org/

	Doxygen Guideline

