
HDMI CEC

Feature Summary
Device Applicability
Architecture Overview
HDMI-CEC Profiles supported in RDK
Component Impacts
How HDMI-CEC Works in RDK
Application API Specification
HDMI-CEC Applications
HDMI CEC Messaging
Multiple Application Support
Methods & Events
API Documentation

Feature Summary
The HDMI_CEC API defines the ability to get connected HDMI devices, send messages to those devices, and to be notified when messages are received
from HDMI devices.

HDMI-CEC is a protocol that provides high-level control functions between audio-visual devices connected over HDMI. CEC is a one-wire bidirectional
serial bus based on industry-standard AV.Link protocol to perform control functions. All audio-visual sources are connected directly or indirectly to a display
device as the ‘root’ in a tree-like structure.

Hardware support for HDMI-CEC as specified in HDMI 1.4a

CEC 4 – Electrical Specification
CEC 5 – Signaling and Bit Timings
CEC 6 – Frame Description
CEC 7 – Reliable Communication Mechanisms
CEC 8 – Protocol Extensions
CEC 9 – CEC Arbitration
CEC 10.1 – Physical Address Discovery
CEC 11 – Switch Requirements

Send raw or formatted CEC messages on behalf of application
Provide received CEC messages to registered application listener
Get information about a device connected to HDMI input
Autonomously handle subset of CEC messages
Provide list of connected CEC capable device to application
Send "Feature Abort" response if message is not handled autonomously by RDK and message is not handled by application listener

Device Applicability
This feature applies to the following devices:

Hybrid
IP

Architecture Overview

HDMI-CEC Profiles supported in RDK

Profiles Description

Discovery Discover HDMI devices that support CEC and provide settop information to those devices

Power Synchronize settop power state with HDMI device power state

Switching Switch settop HDMI inputs to settop HDMI outputs

Channel Change Change channel on settop from HDMI device

Audio Control audio mute/volume on HDMI device from settop and vice versa

User Input Accept user input commands from HDMI device

Component Impacts
CEC Protocol Library

Translate application commands to CEC commands
Receive CEC commands and provide to application listeners
Autonomously respond to a subset of CEC messages

HDMI-CEC HAL

Abstracts SoC HDMI-CEC driver from higher level components that means it will abstract SoC CEC library from CEC Protocol Library
it allow transmits/receives HDMI-CEC messages

SoC CEC Driver

Serialize and send CEC commands
Receive CEC commands and provide to CEC Protocol Library
Send EDID to HDMI source

Provide HDMI input connect notification

Service Manager

Provide HDMI input connect notification via State Observer API.
Select select video source

Device Settings HAL

Device Settings APIs that SoC vendors implement. It provides primitive and hardware specific implementation for each controllable aspect of the
SoC. This level API is considered single-app mode only, even though its SoC implementation may potentially support multiple-app mode.

Initialize and terminate device inputs and outputs.
Determine device settings capabilities (e.g. supported video resolutions, audio modes, etc).
Modify device settings (e.g. audio encoding).
Modify front panel LEDs.
Provide HDMI event notification
Read/Modify/Write EDID
Add dsRegisterHdmiListener
Add dsSelectVideoSource
Add dsScaleVideoSource

SoC Video Pipeline

Source video from HDMI input

How HDMI-CEC Works in RDK

Application API Specification
Overall the RDK-CEC library offers 3 categories of application APIs,

HDMI-CEC Connection

The Connection APIs allows application to transmit and receive raw data bytes (a.k.a. CEC Frame) that conforms to the HDMI-CEC specification.
This is the only interface that the application can use to access CEC Bus.

HDMI-CEC Message and Frame Structure

The Messages APIs allows application to encode high-level message constructs into CECFrame raw bytes, or decode CECFrame raw bytes into
high-level message constructs.

HDMI-CEC Library Interface

The Library APIs allows application to contrl how the CEC stack operates, such as adding logical address to the stack.

The interface allows libCEC implementation to interact with the host environment. Such interaction includes monitoring of the Power State change, Host
the HDMI HotPlug events, or API to change the Host State. The Host Interface is delivered as a run-time plugin to the libCEC stack. This allows the CEC
stack to run in any devices that implements the Host Interface.

The Component access the HDMI-CEC SoC Driver via the CEC HAL API. The vendors are responsible in delivering a SoC Driver that conforms to Driver
the HAL API (see the header file hdmi_cec_driver.h)

HDMI-CEC Applications
The relation between Application, Connection and CEC-Bus is described in the figure.

CEC Daemon

This daemon receives Raw Bytes from the SoC Driver and dispatches them into IARM Bus via CecIARMMgr, it also receives Raw Bytes from
IARM Bus and send to the SoC Driver. It controls the only access point to the physical HDMI CEC Bus.

Receiver

This application receives Raw Bytes from IARM Bus and dispatch to Service Manager (which in turn may dispatch the bytes to Guide
Application). It also receives Raw bytes from Service Manager and send to the IARM-Bus.

CECDevMgr

This application is a "sniffer" on the CEC Bus. It monitors all messages on the bus and construct a Device Map, which depicts the topology of all
connected devices on the CEC Bus. Other applications can be developed similar to Receiver or CECDevMgr where the CEC Raw bytes (in form
of CECFrame) are send/receive to/from IARM Bus. This pseudo CEC Driver implemented on IARM Bus is called CEC IARM Adapter in the
diagram.

HDMI CEC Messaging
The is a byte buffer that provides access to raw CEC bytes. CECFrame is guaranteed to be a complete CEC Message that has the necessary CECFrame
data blocks:

The Data block (The byte that contains the initiator and destination address)Header
The Data Block (The byte that contains the opcode).OpCode
The Data Block.(The bytes that contains the operands).Operand

In most cases application need not access directly, but manipulate the raw bytes through the Message API. The Message API allows the CECFrame
application to send or receive high-level CEC message construct instead of raw bytes. Basically for each CEC message (such as ActiveSource), there is a
C++ class implementation representing it. Each message class provides necessary getter and setter methods to access the properties of each message.

Asynchronous Vs. Synchronous

When messages converge on the logical buses, they are queued for sending opportunities on the physical bus. The waiting time for such send to
complete, though short in most cases, can be problematic to some interactive real-time applications. It is recommended that the applications always send
CEC messages asynchronously via the Connection API and use the listener APIs to monitor response messages or device state changes. The CEC
library offers abundant APIs to facilitate such asynchronous implementation and the application is encouraged to make full use of them.

Given the vast variance of HDMI-CEC support from the off-the-self media devices, it is not recommended that application wait for the response from a
destination device. Even if the request message is sent out successfully, the destination device may choose to ignore the request. The recommended
approach is again to send the request asynchronously and use the listener to monitor responses.

Overall, given the asynchronous nature of HDMI-CEC, application should always opt to use Asynchronous APIs as first choice. And for same reasons, the
RDK CEC library offers only limited support for Synchronous APIs.

Multiple Application Support
Often , the application functionality (Record, Tune and Playback) is distributed across multiple components. In order for any component to have equivalent
access to the HDMI-CEC bus, the library offers Multi-App support via IARM-Bus. This support is enabled by default, and can be disabled if desired.

In essence, there is only one physical CEC bus on a system. However, with the help of Connection, Logical CEC-Bus, and IARM-Bus, the CEC library can
converge the CEC traffic from different Connections and Logical Buses before forwarding them to the single physical bus. This is illustrated by the diagram
below.

In this diagram there are two applications (Receiver and CECDevMgr). Since both applications can only access the underlying physical CEC Bus via
Connection API, they have no knowledge how the message are eventually delivered to the Physical Bus.

For both applications, its CEC messages flows from,

Connection --> Logical Bus--> CEC IARM Apaper--> IARM Bus---> (CECDaemonMain)

For CECDaemonMain, its CEC messages flows from,

IARM Bus --> CecIARMMgr --> Connection --> Logical Bus --> CEC Driver --> (Physical Bus)

The message flow on Connections and Logical Buses are full duplex.

Methods & Events
Following methods are used for DMI CEC module.

Name Parameters Description

setEnabled enabled :
boolean

Enables or disables CEC

getEnabled none Returns true if CEC is enabled

setName name : string Sets the name of the STB device. The default name is "STB". It is recommended that the name of the device is set
prior to enabling CEC.

getName none Returns the name of the STB device

sendMessage message :
String

The message is a base64 encoded byte array of the raw CEC bytes. The CEC message includes the device ID for the
intended destination.

getCECAddr
esses

none return the JSON object < > that is assigned to the local device. It does not contain the <CECAddresses> CECAddresses
of other devices on the connected CEC network.

"CECAddresses" : {
 "physicalAddress": Array of 4 bytes [byte0, byte1, byte2, byte3],
 "logicalAddresses" : Array of <CECLogicalAddress>
}

"CECLogicalAddress" : {
 "deviceType" : <string>
 "logicalAddress": <integer>
}

The returned is part or all of devices types optionally set by XRE.deviceType

A CEC device can have multiple deviceTypes, if so an array of <CECLogicalAddress> with size more than one is
returned.

Default is Tuner, and its logical Address is either 3, 6, 7, or 10.deviceType

In messages sent by XRE, XRE can only use the logicalAddress returned from .CECAddresses

Accepted are: "Tuner", "Record", "Playback", "AudioSystem", "VideoProcessor", "Switch"deviceType

Events notification:

Name Content Description

onMessage message : String Fired when a message is sent from an HDMI device. Message is a base64 encoded byte array of
the raw CEC bytes.

cecAddressesChan
ged

JSON object
<CECAddresses>

Notify that address of the host CEC device has changed

API Documentation
 To know more about SoC/Application level APIs details use in RDK, refer the link RDK HDMI-CEC API Documentation

https://wiki.rdkcentral.com/doxygen/rdkv-opensourced/d4/d25/group___h_d_m_i___c_e_c.html

	HDMI CEC

