
RDK-V RPI containers User Manual

Introduction
Why Containers?
Advantages of Containers

Implementation details
Containers layer - meta-rdk-containers:
Emulator layer - meta-rdk-bsp-emulator:
New Container generation process:
XML and conf files:
Service files:

Implemented containers
Platformcontrol
Rmfstreamer
Rdkbrowser2

Building procedure
Container verification
DEBUG Logs
Test cases
References

Introduction

Containers offer a logical packaging mechanism in which applications can be abstracted from the environment in which they run. Containers are often 
compared with virtual machines (VMs).  a guest operating system such as Linux or Windows runs on top of a host operating system with virtual access to 
the underlying hardware. Like virtual machines, containers allow to package your application together with libraries and other dependencies, providing 
isolated environments for running your software services.

Why Containers?

Instead of virtualizing the hardware stack, containers virtualize at the operating system level, with multiple containers running atop the OS kernel 
directly which means containers are more lightweight: they share the OS kernel, start much faster, and use a fraction of the memory compared to 
booting an entire OS.



Container consists of an entire run-time environment: an application, plus all its dependencies, libraries and other binaries, and configuration files 
needed to run it, bundled into one package. By containerizing the application platform and its dependencies, differences in OS distributions and 
underlying infrastructure are abstracted away.

Advantages of Containers

A container may be only tens of megabytes in size, whereas a virtual machine with its own entire operating system may be several gigabytes in 
size.
Containerization allows for greater modularity. Rather than run an entire complex application inside a single container, the application can be split 
in to modules.

Implementation details

  Containers layer - meta-rdk-containers:    

    Consists of main container image(rdk-generic-hybrid-lxc-image).
    Latest "lxc-container-generator" has been added for container generation at do_rootfs stage.
    Distro feature and latest lxc version updated in qemux86hybsecure.conf.

  Emulator layer - meta-rdk-bsp-emulator:

       Added emulator specific package groups and plugins to the container image.

  New Container generation process:

     This subsection describes how the new container generation process is replacing the earlier process.

      In this process containers will be generated using  "lxc-container-generator"  recipe, which will use corresponding .xml files to generate 
containers.
      All  dependencies(such as required binaries,libraries,script files) will be provided in each container .XML file.
      For permissions of files  "add-users-groups-file-owners-and-permissions.inc" file has been added.
      At rootfs stage containers will be generated in /container path of rootfs.
      Each container will consists of corresponding script (.sh) file for launching that particular container.
      Every process will be launched from corresponding component service file. Single (or) multiple processes can be launched/attached to 
container.

  XML and conf files:

    All required XML and configuration files are placed along with lxc-container-generator recipe in meta-rdk-bsp-emulator layer.

  Service files:     

  In platformcontrol container: 

                 Three service files used for launching corresponding processes inside container (sysmgr.service, irmgr.service and dsmgr.service) .        

  : In rmfstreamer container

                 rmfstreamer.service file has been used.

        Already these two containers are present in the existing system. we have implemented one more container (rdkbrowser2) which is the replacement of 
wpelauncher container.

      

  : In  rdkbrowser2 container

                 rdkbrowser2.service file has been used.

Implemented containers

 Platformcontrol

runs sysmgr,irmgr and dsmgr processes.
sysmgr will be launched in new container using lxc-execute.



irmgr and dsmgr processes has been attached to same container using lxc-attach.

 Rmfstreamer

 runs rmfstreamer.
 rmfstreamer will be launched in new container using lxc-execute.

Rdkbrowser2

 runs rdkbrowser2 browser application inside container.
 westeros will be launched in new container using lxc-execute.
 rdkbrowser2 will be attached to the same container using lxc-attach.

       Note: As we are in the plan of bringing APPmanager as default application we are not running rdkbrowser2 service file on boot-up.

Building procedure

    repo init -u https://code.rdkcentral.com/r/manifests -b rdk-next -m rdkv-asp-extsrc.xml
    repo sync --no-tags
    source meta-cmf-raspberrypi/setup-environment
    select meta-cmf-raspberrypi/conf/machine/raspberrypirdkhyblxc.conf
    bitbake rdk-generic-hybrid-wpe-lxc-image

Container verification

    pstree can be used to track the list of containers running as below.

              

https://code.rdkcentral.com/r/manifests


     ps -Af | grep lxc also lists the current running containers.

     

DEBUG Logs

strace can give more debug information about containers:

          Example:
          strace -f -o lxc-execute.log /usr/bin/lxc-attach -n PLATFORMCONTROL -f /container/PLATFORMCONTROL/conf/lxc.conf

          -u 704 -g 704  -- /usr/bin/dsMgrMain

lxc-execute.log for debugging purpose.

Test cases

   RMFAPP can be used to verify rmfstreamer container. 
   Example: play  http://192.168.2.68:8080/vldms/tuner?ocap_locator=ocap://0x125d
   RDKBROWSER2 can be used to launch any URL.
   Example:  
          systemctl start rdkbrowser2.service - user can see the webpage in rdkbrowser2.
   If user wants to change URL, then we need to enter into this container and need to change rdkbrowser2.sh binary  as below:
   systemctl stop rdkbrowser2.service
   use command:
   /usr/bin/lxc-execute -n RDKBROWSER2    -f /container/RDKBROWSER2/conf/lxc.conf – /bin/sh
   and then change url in /usr/bin/rdkbrowser2.sh file inside this container environment.

References

https://cloud.google.com/containers/
https://www.cio.com/article/2924995/software/what-are-containers-and-why-do-you-need-them.html
https://linuxcontainers.org/
https://help.ubuntu.com/lts/serverguide/lxc.html
https://linuxcontainers.org/lxc/documentation/

http://192.168.2.68:8080/vldms/tuner?ocap_locator=ocap://0x125d
https://cloud.google.com/containers/
https://www.cio.com/article/2924995/software/what-are-containers-and-why-do-you-need-them.html
https://linuxcontainers.org/
https://help.ubuntu.com/lts/serverguide/lxc.html
https://linuxcontainers.org/lxc/documentation/

	RDK-V RPI containers User Manual

