
Guideline to SoC and OEM

SoC layer design guidelines
OEM layer design guidelines
Guideline to create OEM specific images
Adding a new SoC/OEM to RDK

Creating the new SoC/OEM Layer
Adding the Machine Configuration File
Adding a Kernel for the Machine
Adding recipes for SoC/OEM
Creating packages for building images

Bitbake work-flow

This section is intended to help SoC/ OEM vendors to integrate RDK's Yocto framework to their platform.

A basic description about SoC and OEM layers can be found here: Yocto layers

SoC layer design guidelines
There shall be separate configuration file (.inc) for each variant of chip-set which will be used by the OEM layer to build a specific device.
There shall be an option to build an image for reference platforms
There shall be only one layer for a particular SoC which can support multiple chip variants and the same layer can be integrated with different 
OEM layers
All the binaries and libraries shall be installed in /usr/bin and /usr/lib of RFS ; It shall not be installed in any other directory. Remember /bin /sbin 
/lib are for system binaries and libraries which are common for all platforms.The /usr/local is used for overriding the existing one with recompiled 
binary/library which is not applicable in Set Top Box scenario.

OEM layer design guidelines
There shall be separate device (machine)  configuration file (.conf) for each device for the particular chip family for which the OEM layer is 
intended for
       For Eg : A layer "meta-rdk-oem-OEM-X-SOC-Y" means this layer shall be able to build any devices manufactured by  OEM "X" with all 
variants of SoC "Y" like Y-1,Y-2 etc
It is recommended to use small case alphanumerical characters to denote a machine configuration file. For example ; qemux86.conf. Avoid 
special characters, "_" etc. Remember an "_" denotes overriding in Yocto scenario and therefore using it for configuration file name can cause 
issues.
If one OEM use two different SoCs for different devices, there shall be two separate layers such as "meta-rdk-oem-OEM-X-SOC-Y" , "meta-rdk-
oem-OEM-X-SOC-Z" etc
The device (machine) configuration file shall include corresponding include (.inc) file to get machine configuration details. 

Guideline to create OEM specific images
All the work needs be done only in the meta-rdk-oem layer

Write a recipe <oem>-  under recipes-tools to copy all the tools, binaries and scripts needed to create custom oem image to the image-tools-native.bb
staging binary directory

This recipe should fetch all the sources from the GIT repo
Example name space for the GIT repo where you should place all the tools like permission files, authentication keys etc - “rdk/devices/<OEM>
/<OEM_device>/tools”
Example namespace for the GIT repo to keep all the binaries (crcsum etc) - “rdk/devices/<OEM>/<OEM_device>/bin”
This recipe will have only one task – do_install, which copies all the necessary files to create oem images to staging binary directory
"inherit native" this class would short-circuit all the target build and strip tasks.

Adding a new SoC/OEM to RDK
Adding a new machine to the Yocto Project is a straightforward process which involves following steps:

Create a new layer which will hold all the recipes and machine configurations for the new SoC/OEM.
Adding the Machine Configuration File for the new SoC/OEM.
Adding a Kernel for the Machine.
Adding Recipe for SoC/OEM
Creating packages for building images

Creating the new SoC/OEM Layer

Use the yocto-layer create sub-command to create a new general layer.

https://wiki.rdkcentral.com/display/RDK/Yocto+Integration+in+RDK#YoctoIntegrationinRDK-yoctolayers
http://image-tools-native.bb/


 yocto-layer create mylayer

There shall be separate device (machine)  configuration file (.conf) for each device for the particular chip family for which the layer is intended for

For Eg : A layer "meta-rdk-oem-OEM-X-SOC-Y" means this layer shall be able to build any devices manufactured by  OEM "X" with all variants of 
SoC "Y" like Y-1,Y-2 etc

The device (machine) configuration file shall include corresponding include (.inc) file to get machine configuration details.

Adding the Machine Configuration File

To add a machine configuration, you need to add a .conf file with details of the device being added to the conf/machine/ file.
The most important variables to set in this file are as follows:

TARGET_ARCH (e.g. "arm")
PREFERRED_PROVIDER_virtual/kernel 
MACHINE_FEATURES (e.g. "apm screen wifi")

You might also need these variables:

KERNEL_IMAGETYPE (e.g. "zImage")
IMAGE_FSTYPES (e.g. "tar.gz jffs2")

The default configuration are defined in meta-rdk/conf/distro/rdk.conf and it should be overwritten by the machine specific conf file.
For example, meta-rdk-oem-<>/meta-<>/conf/machine/include/<>.inc

PREFERRED_PROVIDER_virtual/iarmmgrs-hal = "iarmmgrs-hal-broadcom"
PREFERRED_PROVIDER_virtual/closedcaption-hal = "closedcaption-hal-broadcom"

Adding a Kernel for the Machine

The OpenEmbedded build system needs to be able to build a kernel for the machine. We need to either create a new kernel recipe for this machine, or 
extend an existing recipe. There are several kernel examples in the Source Directory at meta/recipes-kernel/linux that can be used as references. 
If you are creating a new recipe, following steps need to be done:

setting up a SRC_URI.
Specify any necessary patches
create a configure task that configures the unpacked kernel with a defconfig.

If you are extending an existing kernel, it is usually a matter of adding a suitable defconfig file. The file needs to be added into a location similar to 
defconfig files used for other machines in a given kernel.
A possible way to do this is by listing the file in the SRC_URI and adding the machine to the expression in COMPATIBLE_MACHINE:

COMPATIBLE_MACHINE = '(qemux86|qemumips)'

Adding recipes for SoC/OEM

The following kind of recipes can be added to SoC/OEM layer. The recipes shall be grouped as described in slide “BSP Reference Layer”

recipes (.bb) to build Kernel
recipes(.bb)  to build SDK
Kernel patches (SoC/OEM specific - if any)
SDK patches (SoC/OEM specific - if any)
Any SoC/OEM specific scripts or files which need to be installed in RFS

Creating packages for building images

Create a custom package-group for the SoC/OEM which shall list all the recipes that are required for the image. 
Create a custom image for generating RFS for required SoC/OEM. 

Bitbake work-flow
All the components are built using individual recipes. There shall be a main image recipe (example , rdk-generic-image) which includes all other 
required recipe and create the final RFS
Package groups recipe is one support a image recipe to select the set of packages
The recipes will be called in sequence
(1) opensource components
(2) Kernel
(3) SDK
(4) RDK
(5) MSO
(6) Packaging and create final image.



The final linux and RFS  image will be created under build_folder/tmp/deploy/images


	Guideline to SoC and OEM

