
Repo Command Reference

Repo is a tool built on top of Git. Repo helps manage many Git repositories, does the uploads to revision control systems, and automates parts of the
development workflow. Repo is not meant to replace Git, only to make it easier to work with Git.

The repo command is an executable Python script that you can put anywhere in your path.

init

Installs repo in the current directory. This creates a directory with Git repositories for the repo source code and the standard manifest files. .repo/

$ repo init -u url [options]

Options:

-u: Specify a URL from which to retrieve a manifest repository.
-m: Select a manifest file within the repository. If no manifest name is selected, the default is default.xml.
-b: Specify a revision, that is, a particular manifest-branch.

Example:

repo init -u https://user@code.rdkcentral.com/r/manifests

sync

Downloads new changes and updates the working files in your local environment, essentially accomplishing git fetch across all Git repositories.

 repo sync without arguments, synchronizes the files for all projects.

$ repo sync [project-list]

Options:

-c: Fetch only the current manifest branch from the server.
-d: Switch specified projects back to the manifest revision. This is helpful if the project is currently on a topic branch, but the manifest revision is
temporarily needed.
-f: Proceed with syncing other projects even if a project fails to sync.
-j threadcount: Split the sync across threads for faster completion. Make sure not to overwhelm your machine by leaving some CPU
reserved for other tasks. To see the number of available CPUs, first run: nproc --all
-q: Run quietly by suppressing status messages.
-s: Sync to a known good build as specified by the element in the current manifest.manifest-server

Example:

repo sync

Upload

For the specified projects, Repo compares the local branches to the remote branches updated during the last repo sync.

Repo prompts to select one or more of the branches that haven't been uploaded for review.

without arguments, searches all of the projects for changes to upload. repo upload

$ repo upload [project-list]

repo upload

Diff

Shows outstanding changes between the commit and the working tree using repo diff.

$ repo diff [project-list]

forall

Executes the given shell command in each project.

$ repo forall [project-list] -c command

The following additional environment variables are made available by repo forall:

REPO_PROJECT is set to the unique name of the project.
REPO_PATH is the path relative to the root of the client.
REPO_REMOTE is the name of the remote system from the manifest.
REPO_LREV is the name of the revision from the manifest, translated to a local tracking branch. Use this if you need to pass the manifest revision
to a locally executed Git command.
REPO_RREV is the name of the revision from the manifest, exactly as written in the manifest.

Options:

-c: Command and arguments to execute. The command is evaluated through and any arguments after it are passed through as shell /bin/sh
positional parameters.
-p: Show project headers before output of the specified command. This is achieved by binding pipes to the command's stdin, stdout, and sterr
streams, and piping all output into a continuous stream that is displayed in a single pager session.
-v: Show messages the command writes to stderr.

Example:

repo forall -c 'git push -u cmf branch-name'

start

Begins a new branch for development, starting from the revision specified in the manifest.

$ repo start branch-name [project-list]

Options:
 -h, --help show this help message and exit
 --all begin branch in all projects

The argument provides a short description of the change you're trying to make to the projects. If you don't know, consider using the name BRANCH_NAME d
.efault

The argument specifies which projects participate in this topic branch.project-list

status

Compares the working tree to the staging area (index) and the most recent commit on this branch (HEAD) in each project specified. Displays a summary
line for each file where there is a difference between these three states.

$ repo status [project-list]

	Repo Command Reference

