Git Command Reference

Git is a fast, scalable, distributed revision control system with an unusually rich command set that provides both high-level operations and full access to
internals. This page familiarizes some of the useful git commands while dealing with RDK code base.

checkout

To switch to another branch in your local work environment.

$ git checkout BRANCH NAME

Synopsis
git checkout [-q] [-f] [-m [<branch>]
git checkout [-q] [-f] [-n] --detach [<branch>]
git checkout [-q] [-f] [-m [--detach] <commit>
git checkout [-q] [-f] [-m [[-b]-B|--orphan] <new_branch>] [<start_poi nt>]
git checkout [-f|--ours|--theirs|-nf--conflict=<style>] [<tree-ish>] [--] <pathspec>...

git checkout [-f|--ours|--theirs|-mj--conflict=<style>] [<tree-ish>] --pathspec-fromfile=<file> [--pathspec-
file-nul]

git checkout (-p|--patch) [<tree-ish>] [--] [<pathspec>.]

Options
® -q,--quiet : Quiet, suppress feedback messages.
® --progress : Progress status is reported on the standard error stream by default when it is attached to a terminal, unless - - qui et is
specified.
e -f --force :When switching branches, proceed even if the index or the working tree differs from HEAD. This is used to throw away local
changes.

® -b <new_branch>: Create a new branch named <new_br anch> and start it at <st art _poi nt >
® -B <new_branch>: Creates the branch <new_br anch> and start it at <st ar t _poi nt >; if it already exists, then reset it to <st art _poi nt >.
This is equivalent to running "git branch" with "-f".

® -t,--track : When creating a new branch, set up "upstream" configuration.
® --no-track : Do not set up "upstream” configuration, even if the br anch. aut oSet upMer ge configuration variable is true.
Example

$ git checkout rdk-next

checks out the rdk-next branch.

add

To stage changesffile modifications and deletions].Accepts arguments for files or directories within the project directory.

$ git add

Synopsis

git add [--verbose | -vV] [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -

p] [--edit | -e] [--[no-]all | --[no-]ignore-renoval | [--update | -u]] [--intent-to-add | -N| [--
refresh] [--ignore-errors] [--ignore-mn ssing] [-renornalize] [--chrmod=(+|-)x] [--pathspec-from

file=<file> [--pathspec-file-nul]] [--] [<pathspec>.]

Options

$ git add [options]

-n , --dry-run :Don't actually add the file(s), just show if they exist and/or will be ignored.

-v, --verbose :Be verbose.

-f, --force :Allow adding otherwise ignored files.

-i, —-interactive : Add modified contents in the working tree interactively to the index. Optional path arguments may be supplied to limit operation

to a subset of the working tree.

® -p,--patch : Interactively choose hunks of patch between the index and the work tree and add them to the index. This gives the user a
chance to review the difference before adding modified contents to the index.

* -e,--edit :Open the diff vs. the index in an editor and let the user edit it. After the editor was closed, adjust the hunk headers and apply the
patch to the index.

® -u ,—update :Update the index just where it already has an entry matching <pathspec>. This removes as well as modifies index entries to

match the working tree, but adds no new files.

Example

$ git add filel.c file2.c

Adds the filel.c and file2.c available in the current folder directory.

commit
Consists of a snapshot of the directory structure and file contents for the entire project. Record changes to the repository.

$ git commit

Synopsis

git conmit [-a | --interactive | --patch] [-s] [-v] [-u<mbde>] [-anmend] [--dry-run] [(-c | -C| --fixup | --
squash) <commit>] [-F <file> | -m<nsg>] [--reset-author] [--allowenpty] [--allow enpty-nmessage] [--no-verify]
[-e] [-author=] [--date=<date>] [--cleanup=<npde>] [--[no-]status] [-i | -0] [--pathspec-fromfile=<file> [--

pat hspec-file-nul]] [-S[<keyid>]] [--] [<pathspec>.]

Options
® -a,-all : Tell the command to automatically stage files that have been modified and deleted, but new files you have not told Git about
are not affected.
® --p,--patch : Use the interactive patch selection interface to chose which changes to commit.
® -C<commit>, --reuse-message=<commit> : Take an existing commit object, and reuse the log message and the authorship information

(including the timestamp) when creating the commit.

® .c <commit>, --reedit-message=<commit> : Like -C, but with - c the editor is invoked, so that the user can further edit the commit message.
® --squash=<commit> : Construct a commit message for use with r ebase - - aut osquash.
® --branch : Show the branch and tracking info even in short-format.
* -F<file>, --file=<file> : Take the commit message from the given file. Use - to read the message from the standard input.
Example

$ vimfilel.c // edit the filel.c
$rmfile2.c
$ git comit -a

The command git commit -a first looks at the working tree, notices that filel.c modified and removed file2.c, performs necessary git add and git rm.

Push
To upload local workspace to remote repository

$ git push

Synopsis

git push [--all | --mirror | --tags] [--followtags] [--atomic] [-n | --dry-run] [--receive-pack=<git-receive-
pack>] [--repo=<repository>] [-f | --force] [-d | --delete] [--prune] [-v | --verbose]

[-u| --set-upstreanm] [-0 <string> | --push-option=<string>] [--[no-]signed|--signed=(true|false|if-asked)] [--
force-with-Iease[=<refnane>[: <expect>]] [--no-verify] [<repository> [<refspec>.]]

Example

$ git push origin HEAD:refs/for/naster

This will push the changes to master branch available in the remote location

branch
To view a list of existing branches

$ git branch

Creates a new topic branch

$ git branch [branch]

Synopsis

git branch [--color[=<when>] | --no-color] [--showcurrent] [-v [--abbrev=<length> | --no-abbrev]] [--colum
[=<options>] | --no-colum] [--sort=<key>] [(--nerged | --no-nerged) [<commit>]] [--contains [<commit]] [--no-
contains [<commit>]] [--points-at <object>] [--format=<format>] [(-r | --remptes) | (-a | --all)] [--list]

[<pattern>.]

git branch [--track | --no-track] [-f] <branchnanme> [<start-point>]

git branch (--set-upstreamto=<upstrean> | -u <upstreanr) [<branchnane>]
git branch --unset-upstream [<branchnanme>]

git branch (-m| -M [<oldbranch>] <newbranch>

git branch (-c | -C [<oldbranch>] <newbranch>

git branch (-d | -D) [-r] <branchnane>...

git branch --edit-description [<branchnane>]

Options

® -d,--delete : Delete a branch.

* -D : Shortcut for - - del ete --force.

* -create-reflog : Create the branch’s reflog.

* -f, --force . Reset <branchname> to <startpoint>, even if <branchname> exists already. Without - f , git branch refuses to change an
existing branch.

® -m,--move :Move/rename a branch and the corresponding reflog.

® -c,-copy :Copy a branch and the corresponding reflog.

® |, -list :List branches. With optional <pattern>...,e.g.git branch --list 'maint-*",listonlythe branches that match the
pattern(s).

® -a,-all :List both remote-tracking branches and local branches. Combine with - - | i st to match optional pattern(s).

® --show-current : print the name of the current branch. In detached HEAD state, nothing is printed.

Example

$ git branch devel opment

creating a new git branch called “devel opnent”

$ git branch -d devel opnent

Deleted development branch.

diff
Show changes between commits, commit and working tree, etc

$git diff

Synopsis

git diff [<options>] [<commit>] [--] [<path>.]

git diff [<options>] --cached [<commit>] [--] [<path>.]
git diff [<options>] <commt> <commit> [--] [<path>.]
git diff [<options>] <blob> <blob>

git diff [<options>] --no-index [--] <path> <path>

Options
® -p,—patch :Generate patch
® -U<n>, --unified=<n>:Generate diffs with <n> lines of context instead of the usual three. Implies - - pat ch. Implies - p.
® --output=<file> :Output to a specific file instead of stdout.
® -raw :Generate the diff in raw format.
® —-minimal :Spend extra time to make sure the smallest possible diff is produced.
® --anchored=<text>: Generate a diff using the "anchored diff" algorithm.
Example
$git diff - Changes in the working tree not yet staged for the next conmmt.
$ git diff --cached - Changes between the index and the |ast commit; what would be committing on running "git
commt" wthout "-a" option.
$ git diff HEAD - Changes in the working tree since last commit; what would be committing on running "git

comnt -a"

log
Show commit logs. Shows the history of the current branch.

$ git log

Shows the commits that aren't pushed.

$ git log m[codeline]..

Synopsis

$ git log [<options>] [<revision range>] [[--] <path>.]

Options
* _follow :Continue listing the history of a file beyond renames (works only for a single file).
® --source :Print out the ref name given on the command line by which each commit was reached.
® --log-size :Include a line “log size <number>" in the output for each commit, where <number> is the length of that commit's message in bytes.
® .| <start>,<end>:<file> , -L :<funcname>:<file>: Trace the evolution of the line range given by "<start>,<end>" (or the function name regex

<funcname>) within the <file>.
-<number>n <number>-max-count=<number> : Limit the number of commits to output.
--skip=<number> : Skip number commits before starting to show the commit output.

Example
$git log --no-nerges

Show the whole commit history, but skip any merges

rebase

Reapply commits on top of another base tip.

$ git rebase [options]

Synopsis
git rebase [-i | --interactive] [<options>] [--exec <cnd>] [--onto <newbase> | --keep-base] [<upstreanr
[<branch>]]
git rebase [-i | --interactive] [<options>] [--exec <cnd>] [--onto <newbase>] --root [<branch>]
git rebase (--continue | --skip | --abort | --quit | --edit-todo | --show current-patch)
Options
® ., --interactive : Make a list of the commits which are about to be rebased. Let the user edit that list before rebasing.
® --continue : Restart the rebasing process after having resolved a merge conflict.
® --abort :Abort the rebase operation and reset HEAD to the original branch.
® —-quit : Abort the rebase operation but HEAD is not reset back to the original branch. The index and working tree are also left

unchanged as a result.
® --onto <newbase> : Starting point at which to create the new commits. If the --onto option is not specified, the starting point is <upstream>. May
be any valid commit, and not just an existing branch name.

® --skip : Restart the rebasing process by skipping the current patch.
® --edit-todo : Edit the todo list during an interactive rebase.
® -m ,—merge :Use merging strategies to rebase. When the recursive (default) merge strategy is used, this allows rebase to be aware of

renames on the upstream side.
® --show-current-patch :Show the current patch in an interactive rebase or when rebase is stopped because of conflicts. This is the equivalent of g
it show REBASE_HEAD.

Example

$ git rebase --interactive

To squash a series of commits into a single commit.

stash

Stash command saves the local modifications away and reverts the working directory to match the HEAD commit.

Synopsis

git stash list [<options>]

git stash show [<options>] [<stash>]

git stash drop [-q|--quiet] [<stash>]

git stash (pop | apply) [--index] [-qg|--quiet] [<stash>]

git stash branch <branchname> [<stash>]

git stash [push [-p|--patch] [-k|--[no-]keep-index] [-q|--quiet] [-u]|--include-untracked] [-a]--all] [-m--
nessage <message>] [--] [<pathspec>.]]

git stash clear

git stash create [<nmessage>]

git stash store [-n]--nessage <nessage>] [-q|--quiet] <commit>

Options

® list [<options>] : List the stash entries that you currently have. Eachstash entryis listed with its name (e.g.st ash@ 0} is the latest
entry,st ash@ 1} is the one before, etc.),

® show [<options>] [<stash>] : Show the changes recorded in the stash entry as a diff between the stashed contents and the commit back when
the stash entry was first created.

® drop [-q]--quiet] [<stash>] : Remove a single stash entry from the list of stash entries. When no<st ash>is given, it removes the latest one. i.e.
st ash@ 0}, otherwise<st ash>must be a valid stash log reference of the formst ash@ <r evi si on>}.

® branch <branchname> [<stash>] : Creates and checks out a new branch named<br anchnane>starting from the commit at which the<st ash>
was originally created, applies the changes recorded in<st ash>to the new working tree and index. If that succeeds, and<st ash>is a reference
of the formst ash@ <r evi si on>}, it then drops the<st ash>. When no<st ash>is given, applies the latest one.

® clear :Removes all the stash entries

® create : Create a stash entry (which is a regular commit object) and return its object name, without storing it anywhere in the ref namespace.

® store : Store a given stash created via git stash create (which is a dangling merge commit) in the stash ref, updating the stash reflog.

Example

$ git pull

file filel.c not up-to-date, cannot nerge.
$ git stash

$ git pull

$ git stash pop

	Git Command Reference

